aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/WinVST/Vibrato/VibratoProc.cpp
blob: 551fb2d090cda62a8ed763dea6ba724b03bda903 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/* ========================================
 *  Vibrato - Vibrato.h
 *  Copyright (c) 2016 airwindows, All rights reserved
 * ======================================== */

#ifndef __Vibrato_H
#include "Vibrato.h"
#endif

void Vibrato::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) 
{
    float* in1  =  inputs[0];
    float* in2  =  inputs[1];
    float* out1 = outputs[0];
    float* out2 = outputs[1];
	double speed = pow(0.1+A,6);
	double depth = (pow(B,3) / sqrt(speed))*4.0;
	double speedB = pow(0.1+C,6);
	double depthB = pow(D,3) / sqrt(speedB);
	double tupi = 3.141592653589793238 * 2.0;
	double wet = (E*2.0)-1.0; //note: inv/dry/wet
    
    while (--sampleFrames >= 0)
    {
		long double inputSampleL = *in1;
		long double inputSampleR = *in2;
		if (fabs(inputSampleL)<1.18e-37) inputSampleL = fpd * 1.18e-37;
		if (fabs(inputSampleR)<1.18e-37) inputSampleR = fpd * 1.18e-37;
		double drySampleL = inputSampleL;
		double drySampleR = inputSampleR;
		
		airFactorL = airPrevL - inputSampleL;
		airFactorR = airPrevR - inputSampleR;
		
		if (flip) {
			airEvenL += airFactorL; airOddL -= airFactorL; airFactorL = airEvenL;
			airEvenR += airFactorR; airOddR -= airFactorR; airFactorR = airEvenR;
		} else {
			airOddL += airFactorL; airEvenL -= airFactorL; airFactorL = airOddL;
			airOddR += airFactorR; airEvenR -= airFactorR; airFactorR = airOddR;
		}
		
		airOddL = (airOddL - ((airOddL - airEvenL)/256.0)) / 1.0001;
		airOddR = (airOddR - ((airOddR - airEvenR)/256.0)) / 1.0001;
		airEvenL = (airEvenL - ((airEvenL - airOddL)/256.0)) / 1.0001;
		airEvenR = (airEvenR - ((airEvenR - airOddR)/256.0)) / 1.0001;
		airPrevL = inputSampleL;
		airPrevR = inputSampleR;
		inputSampleL += airFactorL;
		inputSampleR += airFactorR;
		
		flip = !flip;
		//air, compensates for loss of highs in the interpolation
		
		if (gcount < 1 || gcount > 8192) {gcount = 8192;}
		int count = gcount;
		pL[count+8192] = pL[count] = inputSampleL;
		pR[count+8192] = pR[count] = inputSampleR;
		
		double offset = depth + (depth * sin(sweep));
		count += (int)floor(offset);
		
		inputSampleL = pL[count] * (1.0-(offset-floor(offset))); //less as value moves away from .0
		inputSampleL += pL[count+1]; //we can assume always using this in one way or another?
		inputSampleL += pL[count+2] * (offset-floor(offset)); //greater as value moves away from .0
		inputSampleL -= ((pL[count]-pL[count+1])-(pL[count+1]-pL[count+2]))/50.0; //interpolation hacks 'r us
		inputSampleL *= 0.5; // gain trim
		
		inputSampleR = pR[count] * (1.0-(offset-floor(offset))); //less as value moves away from .0
		inputSampleR += pR[count+1]; //we can assume always using this in one way or another?
		inputSampleR += pR[count+2] * (offset-floor(offset)); //greater as value moves away from .0
		inputSampleR -= ((pR[count]-pR[count+1])-(pR[count+1]-pR[count+2]))/50.0; //interpolation hacks 'r us
		inputSampleR *= 0.5; // gain trim
		
		sweep += (speed + (speedB * sin(sweepB) * depthB));
		sweepB += speedB;
		if (sweep > tupi){sweep -= tupi;}
		if (sweep < 0.0){sweep += tupi;} //through zero FM
		if (sweepB > tupi){sweepB -= tupi;}
		gcount--;
		//still scrolling through the samples, remember
		
		if (wet !=1.0) {
			inputSampleL = (inputSampleL * wet) + (drySampleL * (1.0-fabs(wet)));
			inputSampleR = (inputSampleR * wet) + (drySampleR * (1.0-fabs(wet)));
		}
		//Inv/Dry/Wet control
		
		//begin 32 bit stereo floating point dither
		int expon; frexpf((float)inputSampleL, &expon);
		fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
		inputSampleL += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62));
		frexpf((float)inputSampleR, &expon);
		fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
		inputSampleR += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62));
		//end 32 bit stereo floating point dither
		
		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}

void Vibrato::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) 
{
    double* in1  =  inputs[0];
    double* in2  =  inputs[1];
    double* out1 = outputs[0];
    double* out2 = outputs[1];	
	double speed = pow(0.1+A,6);
	double depth = (pow(B,3) / sqrt(speed))*4.0;
	double speedB = pow(0.1+C,6);
	double depthB = pow(D,3) / sqrt(speedB);
	double tupi = 3.141592653589793238 * 2.0;
	double wet = (E*2.0)-1.0; //note: inv/dry/wet
    
    while (--sampleFrames >= 0)
    {
		long double inputSampleL = *in1;
		long double inputSampleR = *in2;
		if (fabs(inputSampleL)<1.18e-43) inputSampleL = fpd * 1.18e-43;
		if (fabs(inputSampleR)<1.18e-43) inputSampleR = fpd * 1.18e-43;
		double drySampleL = inputSampleL;
		double drySampleR = inputSampleR;
		
		airFactorL = airPrevL - inputSampleL;
		airFactorR = airPrevR - inputSampleR;
		
		if (flip) {
			airEvenL += airFactorL; airOddL -= airFactorL; airFactorL = airEvenL;
			airEvenR += airFactorR; airOddR -= airFactorR; airFactorR = airEvenR;
		} else {
			airOddL += airFactorL; airEvenL -= airFactorL; airFactorL = airOddL;
			airOddR += airFactorR; airEvenR -= airFactorR; airFactorR = airOddR;
		}
		
		airOddL = (airOddL - ((airOddL - airEvenL)/256.0)) / 1.0001;
		airOddR = (airOddR - ((airOddR - airEvenR)/256.0)) / 1.0001;
		airEvenL = (airEvenL - ((airEvenL - airOddL)/256.0)) / 1.0001;
		airEvenR = (airEvenR - ((airEvenR - airOddR)/256.0)) / 1.0001;
		airPrevL = inputSampleL;
		airPrevR = inputSampleR;
		inputSampleL += airFactorL;
		inputSampleR += airFactorR;
		
		flip = !flip;
		//air, compensates for loss of highs in the interpolation
		
		if (gcount < 1 || gcount > 8192) {gcount = 8192;}
		int count = gcount;
		pL[count+8192] = pL[count] = inputSampleL;
		pR[count+8192] = pR[count] = inputSampleR;
		
		double offset = depth + (depth * sin(sweep));
		count += (int)floor(offset);
		
		inputSampleL = pL[count] * (1.0-(offset-floor(offset))); //less as value moves away from .0
		inputSampleL += pL[count+1]; //we can assume always using this in one way or another?
		inputSampleL += pL[count+2] * (offset-floor(offset)); //greater as value moves away from .0
		inputSampleL -= ((pL[count]-pL[count+1])-(pL[count+1]-pL[count+2]))/50.0; //interpolation hacks 'r us
		inputSampleL *= 0.5; // gain trim
		
		inputSampleR = pR[count] * (1.0-(offset-floor(offset))); //less as value moves away from .0
		inputSampleR += pR[count+1]; //we can assume always using this in one way or another?
		inputSampleR += pR[count+2] * (offset-floor(offset)); //greater as value moves away from .0
		inputSampleR -= ((pR[count]-pR[count+1])-(pR[count+1]-pR[count+2]))/50.0; //interpolation hacks 'r us
		inputSampleR *= 0.5; // gain trim
		
		sweep += (speed + (speedB * sin(sweepB) * depthB));
		sweepB += speedB;
		if (sweep > tupi){sweep -= tupi;}
		if (sweep < 0.0){sweep += tupi;} //through zero FM
		if (sweepB > tupi){sweepB -= tupi;}
		gcount--;
		//still scrolling through the samples, remember
		
		if (wet !=1.0) {
			inputSampleL = (inputSampleL * wet) + (drySampleL * (1.0-fabs(wet)));
			inputSampleR = (inputSampleR * wet) + (drySampleR * (1.0-fabs(wet)));
		}
		//Inv/Dry/Wet control
		
		//begin 64 bit stereo floating point dither
		int expon; frexp((double)inputSampleL, &expon);
		fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
		inputSampleL += ((double(fpd)-uint32_t(0x7fffffff)) * 1.1e-44l * pow(2,expon+62));
		frexp((double)inputSampleR, &expon);
		fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
		inputSampleR += ((double(fpd)-uint32_t(0x7fffffff)) * 1.1e-44l * pow(2,expon+62));
		//end 64 bit stereo floating point dither
		
		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}