aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/WinVST/AverMatrix/AverMatrixProc.cpp
blob: 381ea9c356e3934fef0a5f2c3e198e0c6807b255 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
/* ========================================
 *  AverMatrix - AverMatrix.h
 *  Copyright (c) 2016 airwindows, All rights reserved
 * ======================================== */

#ifndef __AverMatrix_H
#include "AverMatrix.h"
#endif

void AverMatrix::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) 
{
    float* in1  =  inputs[0];
    float* in2  =  inputs[1];
    float* out1 = outputs[0];
    float* out2 = outputs[1];

	double overalltaps = (A * 9.0)+1.0;
	double taps = overalltaps;
	//this is our averaging, which is not integer but continuous
	
	double overallpoles = (B * 9.0)+1.0;
	//this is the poles of the filter, also not integer but continuous
	int yLimit = floor(overallpoles)+1;
	double yPartial = overallpoles - floor(overallpoles);
	//now we can do a for loop, and also apply the final pole continuously
	
	double wet = (C * 2.0)-1.0;
	double dry = (1.0-wet);
	if (dry > 1.0) dry = 1.0;
	
	int xLimit = 1;
	for(int x = 0; x < 11; x++) {
		if (taps > 1.0) {
			f[x] = 1.0;
			taps -= 1.0;
			xLimit++;
		} else {
			f[x] = taps;
			taps = 0.0;
		}
	} //there, now we have a neat little moving average with remainders
	if (xLimit > 9) xLimit = 9;
	
	if (overalltaps < 1.0) overalltaps = 1.0;
	for(int x = 0; x < xLimit; x++) {
		f[x] /= overalltaps;
	} //and now it's neatly scaled, too	
    
    while (--sampleFrames >= 0)
    {
		long double inputSampleL = *in1;
		long double inputSampleR = *in2;
		if (fabs(inputSampleL)<1.18e-37) inputSampleL = fpd * 1.18e-37;
		if (fabs(inputSampleR)<1.18e-37) inputSampleR = fpd * 1.18e-37;
		long double drySampleL = inputSampleL;
		long double drySampleR = inputSampleR;
		
		long double previousPoleL = 0;		
		long double previousPoleR = 0;		
		for (int y = 0; y < yLimit; y++) {
			for (int x = xLimit; x >= 0; x--) {
				bL[x+1][y] = bL[x][y];
				bR[x+1][y] = bR[x][y];
			}
			bL[0][y] = previousPoleL = inputSampleL;
			bR[0][y] = previousPoleR = inputSampleR;
			inputSampleL = 0.0;
			inputSampleR = 0.0;
			for (int x = 0; x < xLimit; x++) {
				inputSampleL += (bL[x][y] * f[x]);
				inputSampleR += (bR[x][y] * f[x]);
			}
		}
		inputSampleL = (previousPoleL * (1.0-yPartial)) + (inputSampleL * yPartial);
		inputSampleR = (previousPoleR * (1.0-yPartial)) + (inputSampleR * yPartial);
		//in this way we can blend in the final pole
		
		inputSampleL = (inputSampleL * wet) + (drySampleL * dry);
		inputSampleR = (inputSampleR * wet) + (drySampleR * dry);
		//wet can be negative, in which case dry is always full volume and they cancel
		
		//begin 32 bit stereo floating point dither
		int expon; frexpf((float)inputSampleL, &expon);
		fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
		inputSampleL += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62));
		frexpf((float)inputSampleR, &expon);
		fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
		inputSampleR += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62));
		//end 32 bit stereo floating point dither
		
		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}

void AverMatrix::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) 
{
    double* in1  =  inputs[0];
    double* in2  =  inputs[1];
    double* out1 = outputs[0];
    double* out2 = outputs[1];

	
	double overalltaps = (A * 9.0)+1.0;
	double taps = overalltaps;
	//this is our averaging, which is not integer but continuous
	
	double overallpoles = (B * 9.0)+1.0;
	//this is the poles of the filter, also not integer but continuous
	int yLimit = floor(overallpoles)+1;
	double yPartial = overallpoles - floor(overallpoles);
	//now we can do a for loop, and also apply the final pole continuously
	
	double wet = (C * 2.0)-1.0;
	double dry = (1.0-wet);
	if (dry > 1.0) dry = 1.0;
	
	int xLimit = 1;
	for(int x = 0; x < 11; x++) {
		if (taps > 1.0) {
			f[x] = 1.0;
			taps -= 1.0;
			xLimit++;
		} else {
			f[x] = taps;
			taps = 0.0;
		}
	} //there, now we have a neat little moving average with remainders
	if (xLimit > 9) xLimit = 9;
	
	if (overalltaps < 1.0) overalltaps = 1.0;
	for(int x = 0; x < xLimit; x++) {
		f[x] /= overalltaps;
	} //and now it's neatly scaled, too	
	
    while (--sampleFrames >= 0)
    {
		long double inputSampleL = *in1;
		long double inputSampleR = *in2;
		if (fabs(inputSampleL)<1.18e-43) inputSampleL = fpd * 1.18e-43;
		if (fabs(inputSampleR)<1.18e-43) inputSampleR = fpd * 1.18e-43;
		long double drySampleL = inputSampleL;
		long double drySampleR = inputSampleR;

		long double previousPoleL = 0;		
		long double previousPoleR = 0;		
		for (int y = 0; y < yLimit; y++) {
			for (int x = xLimit; x >= 0; x--) {
				bL[x+1][y] = bL[x][y];
				bR[x+1][y] = bR[x][y];
			}
			bL[0][y] = previousPoleL = inputSampleL;
			bR[0][y] = previousPoleR = inputSampleR;
			inputSampleL = 0.0;
			inputSampleR = 0.0;
			for (int x = 0; x < xLimit; x++) {
				inputSampleL += (bL[x][y] * f[x]);
				inputSampleR += (bR[x][y] * f[x]);
			}
		}
		inputSampleL = (previousPoleL * (1.0-yPartial)) + (inputSampleL * yPartial);
		inputSampleR = (previousPoleR * (1.0-yPartial)) + (inputSampleR * yPartial);
		//in this way we can blend in the final pole
		
		inputSampleL = (inputSampleL * wet) + (drySampleL * dry);
		inputSampleR = (inputSampleR * wet) + (drySampleR * dry);
		//wet can be negative, in which case dry is always full volume and they cancel
		
		//begin 64 bit stereo floating point dither
		int expon; frexp((double)inputSampleL, &expon);
		fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
		inputSampleL += ((double(fpd)-uint32_t(0x7fffffff)) * 1.1e-44l * pow(2,expon+62));
		frexp((double)inputSampleR, &expon);
		fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
		inputSampleR += ((double(fpd)-uint32_t(0x7fffffff)) * 1.1e-44l * pow(2,expon+62));
		//end 64 bit stereo floating point dither
		
		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}