aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/MacAU/StarChild/StarChild.cpp
blob: 61959c8d352e51e27434ba0ab6f3d0a224fa16ff (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
/*
 *	File:		StarChild.cpp
 *	
 *	Version:	1.0
 * 
 *	Created:	11/9/15
 *	
 *	Copyright:  Copyright � 2015 Airwindows, All Rights Reserved
 * 
 *	Disclaimer:	IMPORTANT:  This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in 
 *				consideration of your agreement to the following terms, and your use, installation, modification 
 *				or redistribution of this Apple software constitutes acceptance of these terms.  If you do 
 *				not agree with these terms, please do not use, install, modify or redistribute this Apple 
 *				software.
 *
 *				In consideration of your agreement to abide by the following terms, and subject to these terms, 
 *				Apple grants you a personal, non-exclusive license, under Apple's copyrights in this 
 *				original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the 
 *				Apple Software, with or without modifications, in source and/or binary forms; provided that if you 
 *				redistribute the Apple Software in its entirety and without modifications, you must retain this 
 *				notice and the following text and disclaimers in all such redistributions of the Apple Software. 
 *				Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to 
 *				endorse or promote products derived from the Apple Software without specific prior written 
 *				permission from Apple.  Except as expressly stated in this notice, no other rights or 
 *				licenses, express or implied, are granted by Apple herein, including but not limited to any 
 *				patent rights that may be infringed by your derivative works or by other works in which the 
 *				Apple Software may be incorporated.
 *
 *				The Apple Software is provided by Apple on an "AS IS" basis.  APPLE MAKES NO WARRANTIES, EXPRESS OR 
 *				IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY 
 *				AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE 
 *				OR IN COMBINATION WITH YOUR PRODUCTS.
 *
 *				IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL 
 *				DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 
 *				OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, 
 *				REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER 
 *				UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN 
 *				IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 */
/*=============================================================================
 StarChild.cpp
 
 =============================================================================*/
#include "StarChild.h"


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

COMPONENT_ENTRY(StarChild)


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	StarChild::StarChild
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
StarChild::StarChild(AudioUnit component)
: AUEffectBase(component)
{
	CreateElements();
	Globals()->UseIndexedParameters(kNumberOfParameters);
	SetParameter(kParam_One, kDefaultValue_ParamOne );
	SetParameter(kParam_Two, kDefaultValue_ParamTwo );
	SetParameter(kParam_Three, kDefaultValue_ParamThree );
	
#if AU_DEBUG_DISPATCHER
	mDebugDispatcher = new AUDebugDispatcher (this);
#endif
	
}


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	StarChild::GetParameterValueStrings
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult			StarChild::GetParameterValueStrings(AudioUnitScope		inScope,
														AudioUnitParameterID	inParameterID,
														CFArrayRef *		outStrings)
{
    return kAudioUnitErr_InvalidProperty;
}



//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	StarChild::GetParameterInfo
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult			StarChild::GetParameterInfo(AudioUnitScope		inScope,
												AudioUnitParameterID	inParameterID,
												AudioUnitParameterInfo	&outParameterInfo )
{
	ComponentResult result = noErr;
	
	outParameterInfo.flags = 	kAudioUnitParameterFlag_IsWritable
	|		kAudioUnitParameterFlag_IsReadable;
    
    if (inScope == kAudioUnitScope_Global) {
        switch(inParameterID)
        {
            case kParam_One:
                AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false);
				outParameterInfo.unit = kAudioUnitParameterUnit_Generic;
                outParameterInfo.minValue = 0.0;
                outParameterInfo.maxValue = 1.0;
                outParameterInfo.defaultValue = kDefaultValue_ParamOne;
                break;
				
            case kParam_Two:
                AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false);
                outParameterInfo.unit = kAudioUnitParameterUnit_Generic;
                outParameterInfo.minValue = 0.0;
                outParameterInfo.maxValue = 1.0;
                outParameterInfo.defaultValue = kDefaultValue_ParamTwo;
                break;
            case kParam_Three:
                AUBase::FillInParameterName (outParameterInfo, kParameterThreeName, false);
                outParameterInfo.unit = kAudioUnitParameterUnit_Generic;
                outParameterInfo.minValue = 0.0;
                outParameterInfo.maxValue = 1.0;
                outParameterInfo.defaultValue = kDefaultValue_ParamThree;
                break;
			default:
                result = kAudioUnitErr_InvalidParameter;
                break;
		}
	} else {
        result = kAudioUnitErr_InvalidParameter;
    }
    
	
	
	return result;
}

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	StarChild::GetPropertyInfo
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult			StarChild::GetPropertyInfo (AudioUnitPropertyID	inID,
												AudioUnitScope		inScope,
												AudioUnitElement	inElement,
												UInt32 &		outDataSize,
												Boolean &		outWritable)
{
	return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable);
}

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// state that plugin supports only stereo-in/stereo-out processing
UInt32 StarChild::SupportedNumChannels(const AUChannelInfo ** outInfo)
{
	if (outInfo != NULL)
	{
		static AUChannelInfo info;
		info.inChannels = 2;
		info.outChannels = 2;
		*outInfo = &info;
	}
	
	return 1;
}


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	StarChild::GetProperty
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult			StarChild::GetProperty(	AudioUnitPropertyID inID,
										   AudioUnitScope 		inScope,
										   AudioUnitElement 	inElement,
										   void *			outData )
{
	return AUEffectBase::GetProperty (inID, inScope, inElement, outData);
}

//	StarChild::Initialize
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult StarChild::Initialize()
{
    ComponentResult result = AUEffectBase::Initialize();
    if (result == noErr)
        Reset(kAudioUnitScope_Global, 0);
    return result;
}

#pragma mark ____StarChildEffectKernel

//-----------------------------------------------------------------------------------------
// this is called the reset the DSP state (clear buffers, reset counters, etc.)
ComponentResult		StarChild::Reset(AudioUnitScope inScope, AudioUnitElement inElement)
{
	int count;
	
	for(count = 0; count < 44101; count++) {d[count] = 0.0;}
	
	for(count = 0; count < 11; count++) {wearL[count] = 0.0; wearR[count] = 0.0; factor[count] = 0.0;}
	
	wearLPrev = 0.0; wearRPrev = 0.0;
	
	
	p[1] = 11; p[2] = 13; p[3] = 17; p[4] = 19; p[5] = 23; p[6] = 29; p[7] = 31; p[8] = 37; p[9] = 41;
	p[10] = 43; p[11] = 47; p[12] = 53; p[13] = 59; p[14] = 61; p[15] = 67; p[16] = 71; p[17] = 73; p[18] = 79; p[19] = 83; p[20] = 89;
	p[21] = 97; p[22] = 101; p[23] = 103; p[24] = 107; p[25] = 109; p[26] = 113; p[27] = 127; p[28] = 131; p[29] = 137; p[30] = 139;
	p[31] = 149; p[32] = 151; p[33] = 157; p[34] = 163; p[35] = 167; p[36] = 173; p[37] = 179; p[38] = 181; p[39] = 191; p[40] = 193;
	p[41] = 197; p[42] = 199; p[43] = 211; p[44] = 223; p[45] = 227; p[46] = 229; p[47] = 233; p[48] = 239; p[49] = 241; p[50] = 251;
	p[51] = 257; p[52] = 263; p[53] = 269; p[54] = 271; p[55] = 277; p[56] = 281; p[57] = 283; p[58] = 293; p[59] = 307; p[60] = 311;
	p[61] = 313; p[62] = 317; p[63] = 331; p[64] = 337; p[65] = 347; p[66] = 349; p[67] = 353; p[68] = 359; p[69] = 367; p[70] = 373;
	p[71] = 379; p[72] = 383; p[73] = 389; p[74] = 397; p[75] = 401; p[76] = 409; p[77] = 419; p[78] = 421; p[79] = 431; p[80] = 433;
	p[81] = 439; p[82] = 443; p[83] = 449; p[84] = 457; p[85] = 461; p[86] = 463; p[87] = 467; p[88] = 479; p[89] = 487; p[90] = 491;
	p[91] = 499; p[92] = 503; p[93] = 509; p[94] = 521; p[95] = 523; p[96] = 541; p[97] = 547; p[98] = 557; p[99] = 563; p[100] = 569;
	p[101] = 571; p[102] = 577; p[103] = 587; p[104] = 593; p[105] = 599; p[106] = 601; p[107] = 607; p[108] = 613; p[109] = 617; p[110] = 619;
	p[111] = 631; p[112] = 641; p[113] = 643; p[114] = 647; p[115] = 653; p[116] = 659; p[117] = 661; p[118] = 673; p[119] = 677; p[120] = 683;
	p[121] = 691; p[122] = 701; p[123] = 709; p[124] = 719; p[125] = 727; p[126] = 733; p[127] = 739; p[128] = 743; p[129] = 751; p[130] = 757;
	p[131] = 761; p[132] = 769; p[133] = 773; p[134] = 787; p[135] = 797; p[136] = 809; p[137] = 811; p[138] = 821; p[139] = 823; p[140] = 827;
	p[141] = 829; p[142] = 839; p[143] = 853; p[144] = 857; p[145] = 859; p[146] = 863; p[147] = 877; p[148] = 881; p[149] = 883; p[150] = 887;
	p[151] = 907; p[152] = 911; p[153] = 919; p[154] = 929; p[155] = 937; p[156] = 941; p[157] = 947; p[158] = 953; p[159] = 967; p[160] = 971;
	p[161] = 977; p[162] = 983; p[163] = 991; p[164] = 997; p[165] = 998; p[166] = 999;
	
	int assign;
	for(count = 0; count < 165; count++)
	{
		t[count] = p[count];
		//these get assigned again but we'll give them real values in case of trouble. They are 32 bit unsigned ints
		assign = p[count] % 10;
		//give us the 1, 3, 7 or 9 on the end
		
		switch (assign){
		case 1: outL[count] = 0.0; outR[count] = p[count]; break;
		case 3: outL[count] = p[count] * 0.25; outR[count] = p[count] * 0.75; break;
		case 7: outL[count] = p[count] * 0.75; outR[count] = p[count] * 0.25; break;
		case 9: outL[count] = p[count]; outR[count] = 0.0; break;
		}
		//this gives us a set of stereo offsets that are always the same. When building our delay outputs,
		//we multiply our -1 to 1 float values by this and add the result to a simple signed int.
		//The result gives us a coarser and coarser output the fewer taps we have,
		//and we divide the result by count*count to drop the volume down again.
	}
	pitchCounter = 2;
	increment = 1;
	dutyCycle = 1;
	
	fpNShapeL = 0.0;
	fpNShapeR = 0.0;
	return noErr;
}


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	FarStarChild3::ProcessBufferLists
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
OSStatus		StarChild::ProcessBufferLists(AudioUnitRenderActionFlags & ioActionFlags,
										  const AudioBufferList & inBuffer,
										  AudioBufferList & outBuffer,
										  UInt32 			inFramesToProcess)
{
	
	Float32 * inputL = (Float32*)(inBuffer.mBuffers[0].mData);
	Float32 * inputR = (Float32*)(inBuffer.mBuffers[1].mData);
	Float32 * outputL = (Float32*)(outBuffer.mBuffers[0].mData);
	Float32 * outputR = (Float32*)(outBuffer.mBuffers[1].mData);
	
	UInt32 nSampleFrames = inFramesToProcess;
	
	Float32 drySampleL;
	Float32 drySampleR;
	Float64 inputSampleL;
	Float64 inputSampleR;
	
	int bufferL = 0;
	int bufferR = 0;
	//these are to build up the reverb tank outs

	UInt32 rangeDirect = (pow(GetParameter( kParam_Two ),2) * 156.0) + 7.0;
	//maximum safe delay is 259 * the prime tap, not including room for the pitch shift offset
	
	Float32 scaleDirect = (pow(GetParameter( kParam_One ),2) * (3280.0/rangeDirect)) + 2.0;
	//let's try making it always be the max delay: smaller range forces scale to be longer
		
	Float32 outputPad = 4 * rangeDirect * sqrt(rangeDirect);
	Float32 overallscale = ((1.0-GetParameter( kParam_Two ))*9.0)+1.0;
	//apply the singlestage groove wear strongest when bits are heavily crushed
	Float32 gain = overallscale;
	if (gain > 1.0) {factor[0] = 1.0; gain -= 1.0;} else {factor[0] = gain; gain = 0.0;}
	if (gain > 1.0) {factor[1] = 1.0; gain -= 1.0;} else {factor[1] = gain; gain = 0.0;}
	if (gain > 1.0) {factor[2] = 1.0; gain -= 1.0;} else {factor[2] = gain; gain = 0.0;}
	if (gain > 1.0) {factor[3] = 1.0; gain -= 1.0;} else {factor[3] = gain; gain = 0.0;}
	if (gain > 1.0) {factor[4] = 1.0; gain -= 1.0;} else {factor[4] = gain; gain = 0.0;}
	if (gain > 1.0) {factor[5] = 1.0; gain -= 1.0;} else {factor[5] = gain; gain = 0.0;}
	if (gain > 1.0) {factor[6] = 1.0; gain -= 1.0;} else {factor[6] = gain; gain = 0.0;}
	if (gain > 1.0) {factor[7] = 1.0; gain -= 1.0;} else {factor[7] = gain; gain = 0.0;}
	if (gain > 1.0) {factor[8] = 1.0; gain -= 1.0;} else {factor[8] = gain; gain = 0.0;}
	if (gain > 1.0) {factor[9] = 1.0; gain -= 1.0;} else {factor[9] = gain; gain = 0.0;}
	//there, now we have a neat little moving average with remainders
	
	if (overallscale < 1.0) overallscale = 1.0;
	factor[0] /= overallscale;
	factor[1] /= overallscale;
	factor[2] /= overallscale;
	factor[3] /= overallscale;
	factor[4] /= overallscale;
	factor[5] /= overallscale;
	factor[6] /= overallscale;
	factor[7] /= overallscale;
	factor[8] /= overallscale;
	factor[9] /= overallscale;
	//and now it's neatly scaled, too
	Float32 accumulatorSample;
	Float32 correction;
	Float32 wetness = GetParameter( kParam_Three );
	Float32 dryness = 1.0 - wetness;	//reverb setup
	
	int count;
	for(count = 1; count < 165; count++)
	{
		t[count] = p[count] * scaleDirect;
		//this is the scaled tap for direct out, in number of samples delay
	}
	
	
	while (nSampleFrames-- > 0) {
		inputSampleL = *inputL;
		inputSampleR = *inputR;
		//assign working variables like the dry
		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
			static int noisesource = 0;
			//this declares a variable before anything else is compiled. It won't keep assigning
			//it to 0 for every sample, it's as if the declaration doesn't exist in this context,
			//but it lets me add this denormalization fix in a single place rather than updating
			//it in three different locations. The variable isn't thread-safe but this is only
			//a random seed and we can share it with whatever.
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleL = applyresidue;
		}
		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
			static int noisesource = 0;
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleR = applyresidue;
			//this denormalization routine produces a white noise at -300 dB which the noise
			//shaping will interact with to produce a bipolar output, but the noise is actually
			//all positive. That should stop any variables from going denormal, and the routine
			//only kicks in if digital black is input. As a final touch, if you save to 24-bit
			//the silence will return to being digital black again.
		}
		drySampleL = inputSampleL;
		drySampleR = inputSampleR;
		
		if (dCount < 0 || dCount > 22050) {dCount = 22050;}
		d[dCount + 22050] = d[dCount] = inputSampleL + inputSampleR;
		dCount--; 
		//feed the delay line with summed channels. The stuff we're reading back
		//will always be plus dCount, because we're counting back to 0.
		
		//now we're going to start pitch shifting.
		dutyCycle += 1;
		if (dutyCycle > scaleDirect) {
			dutyCycle = 1;
			//this whole routine doesn't run every sample, it's making a wacky hypervibrato
			t[pitchCounter] += increment; pitchCounter += 1;
			//pitchCounter always goes up, t[] goes up and down
			//possibly do that not every sample? Let's see what we get
			if (pitchCounter > rangeDirect) {
				if (increment == 1) {
					pitchCounter = 1;
					if (t[1] > ((11 * scaleDirect) + 1000)) increment = -1;
					//let's try hardcoding a big 1000 sample buffer
				}
				else {
					//increment is -1 so we have been counting down!
					pitchCounter = 1;
				
					if (t[1] < (11 * scaleDirect)) {
						//we've scaled everything back so we're going up again
						increment = 1;
						//and we're gonna reset the lot in case of screw-ups (control manipulations)
						for(count = 1; count < 165; count++)
						{
							t[count] = p[count] * scaleDirect;
						}
						//which means we're back to normal and counting up again.
					}
				}
				//wrap around to begin again, and if our first tap is greater than
				//its base value plus scaleDirect, start going down.
			}
		}
		//always wrap around to the first tap		
		
		//Now we do a select case where we jump into the middle of some repetitive math, unrolled.
		bufferL = 0; bufferR = 0;
		//clear before making our delay sound
		switch (rangeDirect) {
			case 164: bufferL += (int)(d[dCount+t[164]]*outL[164]); bufferR += (int)(d[dCount+t[164]]*outR[164]); 
			case 163: bufferL += (int)(d[dCount+t[163]]*outL[163]); bufferR += (int)(d[dCount+t[163]]*outR[163]); 
			case 162: bufferL += (int)(d[dCount+t[162]]*outL[162]); bufferR += (int)(d[dCount+t[162]]*outR[162]); 
			case 161: bufferL += (int)(d[dCount+t[161]]*outL[161]); bufferR += (int)(d[dCount+t[161]]*outR[161]); 
			case 160: bufferL += (int)(d[dCount+t[160]]*outL[160]); bufferR += (int)(d[dCount+t[160]]*outR[160]); 
			case 159: bufferL += (int)(d[dCount+t[159]]*outL[159]); bufferR += (int)(d[dCount+t[159]]*outR[159]); 
			case 158: bufferL += (int)(d[dCount+t[158]]*outL[158]); bufferR += (int)(d[dCount+t[158]]*outR[158]); 
			case 157: bufferL += (int)(d[dCount+t[157]]*outL[157]); bufferR += (int)(d[dCount+t[157]]*outR[157]); 
			case 156: bufferL += (int)(d[dCount+t[156]]*outL[156]); bufferR += (int)(d[dCount+t[156]]*outR[156]); 
			case 155: bufferL += (int)(d[dCount+t[155]]*outL[155]); bufferR += (int)(d[dCount+t[155]]*outR[155]); 
			case 154: bufferL += (int)(d[dCount+t[154]]*outL[154]); bufferR += (int)(d[dCount+t[154]]*outR[154]); 
			case 153: bufferL += (int)(d[dCount+t[153]]*outL[153]); bufferR += (int)(d[dCount+t[153]]*outR[153]); 
			case 152: bufferL += (int)(d[dCount+t[152]]*outL[152]); bufferR += (int)(d[dCount+t[152]]*outR[152]); 
			case 151: bufferL += (int)(d[dCount+t[151]]*outL[151]); bufferR += (int)(d[dCount+t[151]]*outR[151]); 
			case 150: bufferL += (int)(d[dCount+t[150]]*outL[150]); bufferR += (int)(d[dCount+t[150]]*outR[150]);
			case 149: bufferL += (int)(d[dCount+t[149]]*outL[149]); bufferR += (int)(d[dCount+t[149]]*outR[149]); 
			case 148: bufferL += (int)(d[dCount+t[148]]*outL[148]); bufferR += (int)(d[dCount+t[148]]*outR[148]); 
			case 147: bufferL += (int)(d[dCount+t[147]]*outL[147]); bufferR += (int)(d[dCount+t[147]]*outR[147]); 
			case 146: bufferL += (int)(d[dCount+t[146]]*outL[146]); bufferR += (int)(d[dCount+t[146]]*outR[146]); 
			case 145: bufferL += (int)(d[dCount+t[145]]*outL[145]); bufferR += (int)(d[dCount+t[145]]*outR[145]); 
			case 144: bufferL += (int)(d[dCount+t[144]]*outL[144]); bufferR += (int)(d[dCount+t[144]]*outR[144]); 
			case 143: bufferL += (int)(d[dCount+t[143]]*outL[143]); bufferR += (int)(d[dCount+t[143]]*outR[143]); 
			case 142: bufferL += (int)(d[dCount+t[142]]*outL[142]); bufferR += (int)(d[dCount+t[142]]*outR[142]); 
			case 141: bufferL += (int)(d[dCount+t[141]]*outL[141]); bufferR += (int)(d[dCount+t[141]]*outR[141]); 
			case 140: bufferL += (int)(d[dCount+t[140]]*outL[140]); bufferR += (int)(d[dCount+t[140]]*outR[140]); 
			case 139: bufferL += (int)(d[dCount+t[139]]*outL[139]); bufferR += (int)(d[dCount+t[139]]*outR[139]); 
			case 138: bufferL += (int)(d[dCount+t[138]]*outL[138]); bufferR += (int)(d[dCount+t[138]]*outR[138]); 
			case 137: bufferL += (int)(d[dCount+t[137]]*outL[137]); bufferR += (int)(d[dCount+t[137]]*outR[137]); 
			case 136: bufferL += (int)(d[dCount+t[136]]*outL[136]); bufferR += (int)(d[dCount+t[136]]*outR[136]); 
			case 135: bufferL += (int)(d[dCount+t[135]]*outL[135]); bufferR += (int)(d[dCount+t[135]]*outR[135]); 
			case 134: bufferL += (int)(d[dCount+t[134]]*outL[134]); bufferR += (int)(d[dCount+t[134]]*outR[134]); 
			case 133: bufferL += (int)(d[dCount+t[133]]*outL[133]); bufferR += (int)(d[dCount+t[133]]*outR[133]); 
			case 132: bufferL += (int)(d[dCount+t[132]]*outL[132]); bufferR += (int)(d[dCount+t[132]]*outR[132]); 
			case 131: bufferL += (int)(d[dCount+t[131]]*outL[131]); bufferR += (int)(d[dCount+t[131]]*outR[131]); 
			case 130: bufferL += (int)(d[dCount+t[130]]*outL[130]); bufferR += (int)(d[dCount+t[130]]*outR[130]); 
			case 129: bufferL += (int)(d[dCount+t[129]]*outL[129]); bufferR += (int)(d[dCount+t[129]]*outR[129]); 
			case 128: bufferL += (int)(d[dCount+t[128]]*outL[128]); bufferR += (int)(d[dCount+t[128]]*outR[128]); 
			case 127: bufferL += (int)(d[dCount+t[127]]*outL[127]); bufferR += (int)(d[dCount+t[127]]*outR[127]); 
			case 126: bufferL += (int)(d[dCount+t[126]]*outL[126]); bufferR += (int)(d[dCount+t[126]]*outR[126]); 
			case 125: bufferL += (int)(d[dCount+t[125]]*outL[125]); bufferR += (int)(d[dCount+t[125]]*outR[125]); 
			case 124: bufferL += (int)(d[dCount+t[124]]*outL[124]); bufferR += (int)(d[dCount+t[124]]*outR[124]); 
			case 123: bufferL += (int)(d[dCount+t[123]]*outL[123]); bufferR += (int)(d[dCount+t[123]]*outR[123]); 
			case 122: bufferL += (int)(d[dCount+t[122]]*outL[122]); bufferR += (int)(d[dCount+t[122]]*outR[122]); 
			case 121: bufferL += (int)(d[dCount+t[121]]*outL[121]); bufferR += (int)(d[dCount+t[121]]*outR[121]); 
			case 120: bufferL += (int)(d[dCount+t[120]]*outL[120]); bufferR += (int)(d[dCount+t[120]]*outR[120]); 
			case 119: bufferL += (int)(d[dCount+t[119]]*outL[119]); bufferR += (int)(d[dCount+t[119]]*outR[119]); 
			case 118: bufferL += (int)(d[dCount+t[118]]*outL[118]); bufferR += (int)(d[dCount+t[118]]*outR[118]); 
			case 117: bufferL += (int)(d[dCount+t[117]]*outL[117]); bufferR += (int)(d[dCount+t[117]]*outR[117]); 
			case 116: bufferL += (int)(d[dCount+t[116]]*outL[116]); bufferR += (int)(d[dCount+t[116]]*outR[116]); 
			case 115: bufferL += (int)(d[dCount+t[115]]*outL[115]); bufferR += (int)(d[dCount+t[115]]*outR[115]); 
			case 114: bufferL += (int)(d[dCount+t[114]]*outL[114]); bufferR += (int)(d[dCount+t[114]]*outR[114]); 
			case 113: bufferL += (int)(d[dCount+t[113]]*outL[113]); bufferR += (int)(d[dCount+t[113]]*outR[113]); 
			case 112: bufferL += (int)(d[dCount+t[112]]*outL[112]); bufferR += (int)(d[dCount+t[112]]*outR[112]); 
			case 111: bufferL += (int)(d[dCount+t[111]]*outL[111]); bufferR += (int)(d[dCount+t[111]]*outR[111]); 
			case 110: bufferL += (int)(d[dCount+t[110]]*outL[110]); bufferR += (int)(d[dCount+t[110]]*outR[110]); 
			case 109: bufferL += (int)(d[dCount+t[109]]*outL[109]); bufferR += (int)(d[dCount+t[109]]*outR[109]); 
			case 108: bufferL += (int)(d[dCount+t[108]]*outL[108]); bufferR += (int)(d[dCount+t[108]]*outR[108]); 
			case 107: bufferL += (int)(d[dCount+t[107]]*outL[107]); bufferR += (int)(d[dCount+t[107]]*outR[107]); 
			case 106: bufferL += (int)(d[dCount+t[106]]*outL[106]); bufferR += (int)(d[dCount+t[106]]*outR[106]); 
			case 105: bufferL += (int)(d[dCount+t[105]]*outL[105]); bufferR += (int)(d[dCount+t[105]]*outR[105]); 
			case 104: bufferL += (int)(d[dCount+t[104]]*outL[104]); bufferR += (int)(d[dCount+t[104]]*outR[104]); 
			case 103: bufferL += (int)(d[dCount+t[103]]*outL[103]); bufferR += (int)(d[dCount+t[103]]*outR[103]); 
			case 102: bufferL += (int)(d[dCount+t[102]]*outL[102]); bufferR += (int)(d[dCount+t[102]]*outR[102]); 
			case 101: bufferL += (int)(d[dCount+t[101]]*outL[101]); bufferR += (int)(d[dCount+t[101]]*outR[101]); 
			case 100: bufferL += (int)(d[dCount+t[100]]*outL[100]); bufferR += (int)(d[dCount+t[100]]*outR[100]); 
			case  99: bufferL += (int)(d[dCount+t[ 99]]*outL[ 99]); bufferR += (int)(d[dCount+t[ 99]]*outR[ 99]); 
			case  98: bufferL += (int)(d[dCount+t[ 98]]*outL[ 98]); bufferR += (int)(d[dCount+t[ 98]]*outR[ 98]); 
			case  97: bufferL += (int)(d[dCount+t[ 97]]*outL[ 97]); bufferR += (int)(d[dCount+t[ 97]]*outR[ 97]); 
			case  96: bufferL += (int)(d[dCount+t[ 96]]*outL[ 96]); bufferR += (int)(d[dCount+t[ 96]]*outR[ 96]); 
			case  95: bufferL += (int)(d[dCount+t[ 95]]*outL[ 95]); bufferR += (int)(d[dCount+t[ 95]]*outR[ 95]); 
			case  94: bufferL += (int)(d[dCount+t[ 94]]*outL[ 94]); bufferR += (int)(d[dCount+t[ 94]]*outR[ 94]); 
			case  93: bufferL += (int)(d[dCount+t[ 93]]*outL[ 93]); bufferR += (int)(d[dCount+t[ 93]]*outR[ 93]); 
			case  92: bufferL += (int)(d[dCount+t[ 92]]*outL[ 92]); bufferR += (int)(d[dCount+t[ 92]]*outR[ 92]); 
			case  91: bufferL += (int)(d[dCount+t[ 91]]*outL[ 91]); bufferR += (int)(d[dCount+t[ 91]]*outR[ 91]); 
			case  90: bufferL += (int)(d[dCount+t[ 90]]*outL[ 90]); bufferR += (int)(d[dCount+t[ 90]]*outR[ 90]); 
			case  89: bufferL += (int)(d[dCount+t[ 89]]*outL[ 89]); bufferR += (int)(d[dCount+t[ 89]]*outR[ 89]); 
			case  88: bufferL += (int)(d[dCount+t[ 88]]*outL[ 88]); bufferR += (int)(d[dCount+t[ 88]]*outR[ 88]); 
			case  87: bufferL += (int)(d[dCount+t[ 87]]*outL[ 87]); bufferR += (int)(d[dCount+t[ 87]]*outR[ 87]); 
			case  86: bufferL += (int)(d[dCount+t[ 86]]*outL[ 86]); bufferR += (int)(d[dCount+t[ 86]]*outR[ 86]); 
			case  85: bufferL += (int)(d[dCount+t[ 85]]*outL[ 85]); bufferR += (int)(d[dCount+t[ 85]]*outR[ 85]); 
			case  84: bufferL += (int)(d[dCount+t[ 84]]*outL[ 84]); bufferR += (int)(d[dCount+t[ 84]]*outR[ 84]); 
			case  83: bufferL += (int)(d[dCount+t[ 83]]*outL[ 83]); bufferR += (int)(d[dCount+t[ 83]]*outR[ 83]); 
			case  82: bufferL += (int)(d[dCount+t[ 82]]*outL[ 82]); bufferR += (int)(d[dCount+t[ 82]]*outR[ 82]); 
			case  81: bufferL += (int)(d[dCount+t[ 81]]*outL[ 81]); bufferR += (int)(d[dCount+t[ 81]]*outR[ 81]); 
			case  80: bufferL += (int)(d[dCount+t[ 80]]*outL[ 80]); bufferR += (int)(d[dCount+t[ 80]]*outR[ 80]); 
			case  79: bufferL += (int)(d[dCount+t[ 79]]*outL[ 79]); bufferR += (int)(d[dCount+t[ 79]]*outR[ 79]); 
			case  78: bufferL += (int)(d[dCount+t[ 78]]*outL[ 78]); bufferR += (int)(d[dCount+t[ 78]]*outR[ 78]); 
			case  77: bufferL += (int)(d[dCount+t[ 77]]*outL[ 77]); bufferR += (int)(d[dCount+t[ 77]]*outR[ 77]); 
			case  76: bufferL += (int)(d[dCount+t[ 76]]*outL[ 76]); bufferR += (int)(d[dCount+t[ 76]]*outR[ 76]); 
			case  75: bufferL += (int)(d[dCount+t[ 75]]*outL[ 75]); bufferR += (int)(d[dCount+t[ 75]]*outR[ 75]); 
			case  74: bufferL += (int)(d[dCount+t[ 74]]*outL[ 74]); bufferR += (int)(d[dCount+t[ 74]]*outR[ 74]); 
			case  73: bufferL += (int)(d[dCount+t[ 73]]*outL[ 73]); bufferR += (int)(d[dCount+t[ 73]]*outR[ 73]); 
			case  72: bufferL += (int)(d[dCount+t[ 72]]*outL[ 72]); bufferR += (int)(d[dCount+t[ 72]]*outR[ 72]); 
			case  71: bufferL += (int)(d[dCount+t[ 71]]*outL[ 71]); bufferR += (int)(d[dCount+t[ 71]]*outR[ 71]); 
			case  70: bufferL += (int)(d[dCount+t[ 70]]*outL[ 70]); bufferR += (int)(d[dCount+t[ 70]]*outR[ 70]); 
			case  69: bufferL += (int)(d[dCount+t[ 69]]*outL[ 69]); bufferR += (int)(d[dCount+t[ 69]]*outR[ 69]); 
			case  68: bufferL += (int)(d[dCount+t[ 68]]*outL[ 68]); bufferR += (int)(d[dCount+t[ 68]]*outR[ 68]); 
			case  67: bufferL += (int)(d[dCount+t[ 67]]*outL[ 67]); bufferR += (int)(d[dCount+t[ 67]]*outR[ 67]); 
			case  66: bufferL += (int)(d[dCount+t[ 66]]*outL[ 66]); bufferR += (int)(d[dCount+t[ 66]]*outR[ 66]); 
			case  65: bufferL += (int)(d[dCount+t[ 65]]*outL[ 65]); bufferR += (int)(d[dCount+t[ 65]]*outR[ 65]); 
			case  64: bufferL += (int)(d[dCount+t[ 64]]*outL[ 64]); bufferR += (int)(d[dCount+t[ 64]]*outR[ 64]); 
			case  63: bufferL += (int)(d[dCount+t[ 63]]*outL[ 63]); bufferR += (int)(d[dCount+t[ 63]]*outR[ 63]); 
			case  62: bufferL += (int)(d[dCount+t[ 62]]*outL[ 62]); bufferR += (int)(d[dCount+t[ 62]]*outR[ 62]); 
			case  61: bufferL += (int)(d[dCount+t[ 61]]*outL[ 61]); bufferR += (int)(d[dCount+t[ 61]]*outR[ 61]); 
			case  60: bufferL += (int)(d[dCount+t[ 60]]*outL[ 60]); bufferR += (int)(d[dCount+t[ 60]]*outR[ 60]); 
			case  59: bufferL += (int)(d[dCount+t[ 59]]*outL[ 59]); bufferR += (int)(d[dCount+t[ 59]]*outR[ 59]); 
			case  58: bufferL += (int)(d[dCount+t[ 58]]*outL[ 58]); bufferR += (int)(d[dCount+t[ 58]]*outR[ 58]); 
			case  57: bufferL += (int)(d[dCount+t[ 57]]*outL[ 57]); bufferR += (int)(d[dCount+t[ 57]]*outR[ 57]); 
			case  56: bufferL += (int)(d[dCount+t[ 56]]*outL[ 56]); bufferR += (int)(d[dCount+t[ 56]]*outR[ 56]); 
			case  55: bufferL += (int)(d[dCount+t[ 55]]*outL[ 55]); bufferR += (int)(d[dCount+t[ 55]]*outR[ 55]); 
			case  54: bufferL += (int)(d[dCount+t[ 54]]*outL[ 54]); bufferR += (int)(d[dCount+t[ 54]]*outR[ 54]); 
			case  53: bufferL += (int)(d[dCount+t[ 53]]*outL[ 53]); bufferR += (int)(d[dCount+t[ 53]]*outR[ 53]); 
			case  52: bufferL += (int)(d[dCount+t[ 52]]*outL[ 52]); bufferR += (int)(d[dCount+t[ 52]]*outR[ 52]); 
			case  51: bufferL += (int)(d[dCount+t[ 51]]*outL[ 51]); bufferR += (int)(d[dCount+t[ 51]]*outR[ 51]); 
			case  50: bufferL += (int)(d[dCount+t[ 50]]*outL[ 50]); bufferR += (int)(d[dCount+t[ 50]]*outR[ 50]); 
			case  49: bufferL += (int)(d[dCount+t[ 49]]*outL[ 49]); bufferR += (int)(d[dCount+t[ 49]]*outR[ 49]); 
			case  48: bufferL += (int)(d[dCount+t[ 48]]*outL[ 48]); bufferR += (int)(d[dCount+t[ 48]]*outR[ 48]); 
			case  47: bufferL += (int)(d[dCount+t[ 47]]*outL[ 47]); bufferR += (int)(d[dCount+t[ 47]]*outR[ 47]); 
			case  46: bufferL += (int)(d[dCount+t[ 46]]*outL[ 46]); bufferR += (int)(d[dCount+t[ 46]]*outR[ 46]); 
			case  45: bufferL += (int)(d[dCount+t[ 45]]*outL[ 45]); bufferR += (int)(d[dCount+t[ 45]]*outR[ 45]); 
			case  44: bufferL += (int)(d[dCount+t[ 44]]*outL[ 44]); bufferR += (int)(d[dCount+t[ 44]]*outR[ 44]); 
			case  43: bufferL += (int)(d[dCount+t[ 43]]*outL[ 43]); bufferR += (int)(d[dCount+t[ 43]]*outR[ 43]); 
			case  42: bufferL += (int)(d[dCount+t[ 42]]*outL[ 42]); bufferR += (int)(d[dCount+t[ 42]]*outR[ 42]); 
			case  41: bufferL += (int)(d[dCount+t[ 41]]*outL[ 41]); bufferR += (int)(d[dCount+t[ 41]]*outR[ 41]); 
			case  40: bufferL += (int)(d[dCount+t[ 40]]*outL[ 40]); bufferR += (int)(d[dCount+t[ 40]]*outR[ 40]); 
			case  39: bufferL += (int)(d[dCount+t[ 39]]*outL[ 39]); bufferR += (int)(d[dCount+t[ 39]]*outR[ 39]); 
			case  38: bufferL += (int)(d[dCount+t[ 38]]*outL[ 38]); bufferR += (int)(d[dCount+t[ 38]]*outR[ 38]); 
			case  37: bufferL += (int)(d[dCount+t[ 37]]*outL[ 37]); bufferR += (int)(d[dCount+t[ 37]]*outR[ 37]); 
			case  36: bufferL += (int)(d[dCount+t[ 36]]*outL[ 36]); bufferR += (int)(d[dCount+t[ 36]]*outR[ 36]); 
			case  35: bufferL += (int)(d[dCount+t[ 35]]*outL[ 35]); bufferR += (int)(d[dCount+t[ 35]]*outR[ 35]); 
			case  34: bufferL += (int)(d[dCount+t[ 34]]*outL[ 34]); bufferR += (int)(d[dCount+t[ 34]]*outR[ 34]); 
			case  33: bufferL += (int)(d[dCount+t[ 33]]*outL[ 33]); bufferR += (int)(d[dCount+t[ 33]]*outR[ 33]); 
			case  32: bufferL += (int)(d[dCount+t[ 32]]*outL[ 32]); bufferR += (int)(d[dCount+t[ 32]]*outR[ 32]); 
			case  31: bufferL += (int)(d[dCount+t[ 31]]*outL[ 31]); bufferR += (int)(d[dCount+t[ 31]]*outR[ 31]); 
			case  30: bufferL += (int)(d[dCount+t[ 30]]*outL[ 30]); bufferR += (int)(d[dCount+t[ 30]]*outR[ 30]);
			case  29: bufferL += (int)(d[dCount+t[ 29]]*outL[ 29]); bufferR += (int)(d[dCount+t[ 29]]*outR[ 29]); 
			case  28: bufferL += (int)(d[dCount+t[ 28]]*outL[ 28]); bufferR += (int)(d[dCount+t[ 28]]*outR[ 28]); 
			case  27: bufferL += (int)(d[dCount+t[ 27]]*outL[ 27]); bufferR += (int)(d[dCount+t[ 27]]*outR[ 27]); 
			case  26: bufferL += (int)(d[dCount+t[ 26]]*outL[ 26]); bufferR += (int)(d[dCount+t[ 26]]*outR[ 26]); 
			case  25: bufferL += (int)(d[dCount+t[ 25]]*outL[ 25]); bufferR += (int)(d[dCount+t[ 25]]*outR[ 25]); 
			case  24: bufferL += (int)(d[dCount+t[ 24]]*outL[ 24]); bufferR += (int)(d[dCount+t[ 24]]*outR[ 24]); 
			case  23: bufferL += (int)(d[dCount+t[ 23]]*outL[ 23]); bufferR += (int)(d[dCount+t[ 23]]*outR[ 23]); 
			case  22: bufferL += (int)(d[dCount+t[ 22]]*outL[ 22]); bufferR += (int)(d[dCount+t[ 22]]*outR[ 22]); 
			case  21: bufferL += (int)(d[dCount+t[ 21]]*outL[ 21]); bufferR += (int)(d[dCount+t[ 21]]*outR[ 21]); 
			case  20: bufferL += (int)(d[dCount+t[ 20]]*outL[ 20]); bufferR += (int)(d[dCount+t[ 20]]*outR[ 20]); 
			case  19: bufferL += (int)(d[dCount+t[ 19]]*outL[ 19]); bufferR += (int)(d[dCount+t[ 19]]*outR[ 19]); 
			case  18: bufferL += (int)(d[dCount+t[ 18]]*outL[ 18]); bufferR += (int)(d[dCount+t[ 18]]*outR[ 18]); 
			case  17: bufferL += (int)(d[dCount+t[ 17]]*outL[ 17]); bufferR += (int)(d[dCount+t[ 17]]*outR[ 17]); 
			case  16: bufferL += (int)(d[dCount+t[ 16]]*outL[ 16]); bufferR += (int)(d[dCount+t[ 16]]*outR[ 16]); 
			case  15: bufferL += (int)(d[dCount+t[ 15]]*outL[ 15]); bufferR += (int)(d[dCount+t[ 15]]*outR[ 15]); 
			case  14: bufferL += (int)(d[dCount+t[ 14]]*outL[ 14]); bufferR += (int)(d[dCount+t[ 14]]*outR[ 14]); 
			case  13: bufferL += (int)(d[dCount+t[ 13]]*outL[ 13]); bufferR += (int)(d[dCount+t[ 13]]*outR[ 13]); 
			case  12: bufferL += (int)(d[dCount+t[ 12]]*outL[ 12]); bufferR += (int)(d[dCount+t[ 12]]*outR[ 12]); 
			case  11: bufferL += (int)(d[dCount+t[ 11]]*outL[ 11]); bufferR += (int)(d[dCount+t[ 11]]*outR[ 11]); 
			case  10: bufferL += (int)(d[dCount+t[ 10]]*outL[ 10]); bufferR += (int)(d[dCount+t[ 10]]*outR[ 10]); 
			case   9: bufferL += (int)(d[dCount+t[  9]]*outL[  9]); bufferR += (int)(d[dCount+t[  9]]*outR[  9]); 
			case   8: bufferL += (int)(d[dCount+t[  8]]*outL[  8]); bufferR += (int)(d[dCount+t[  8]]*outR[  8]); 
			case   7: bufferL += (int)(d[dCount+t[  7]]*outL[  7]); bufferR += (int)(d[dCount+t[  7]]*outR[  7]); 
			case   6: bufferL += (int)(d[dCount+t[  6]]*outL[  6]); bufferR += (int)(d[dCount+t[  6]]*outR[  6]); 
			case   5: bufferL += (int)(d[dCount+t[  5]]*outL[  5]); bufferR += (int)(d[dCount+t[  5]]*outR[  5]); 
			case   4: bufferL += (int)(d[dCount+t[  4]]*outL[  4]); bufferR += (int)(d[dCount+t[  4]]*outR[  4]);
			case   3: bufferL += (int)(d[dCount+t[  3]]*outL[  3]); bufferR += (int)(d[dCount+t[  3]]*outR[  3]);
			case   2: bufferL += (int)(d[dCount+t[  2]]*outL[  2]); bufferR += (int)(d[dCount+t[  2]]*outR[  2]);
			case   1: bufferL += (int)(d[dCount+t[  1]]*outL[  1]); bufferR += (int)(d[dCount+t[  1]]*outR[  1]);
		}
		//test to see that delay is working at all: it will be a big stack of case with no break
		
		inputSampleL = bufferL;
		inputSampleR = bufferR;
		//scale back the reverb buffers based on how big of a range we used
		
		
		wearR[9] = wearR[8]; wearR[8] = wearR[7]; wearR[7] = wearR[6]; wearR[6] = wearR[5];
		wearR[5] = wearR[4]; wearR[4] = wearR[3]; wearR[3] = wearR[2]; wearR[2] = wearR[1];
		wearR[1] = wearR[0]; wearR[0] = accumulatorSample = (inputSampleR-wearRPrev);
		
		accumulatorSample *= factor[0];
		accumulatorSample += (wearR[1] * factor[1]);
		accumulatorSample += (wearR[2] * factor[2]);
		accumulatorSample += (wearR[3] * factor[3]);
		accumulatorSample += (wearR[4] * factor[4]);
		accumulatorSample += (wearR[5] * factor[5]);
		accumulatorSample += (wearR[6] * factor[6]);
		accumulatorSample += (wearR[7] * factor[7]);
		accumulatorSample += (wearR[8] * factor[8]);
		accumulatorSample += (wearR[9] * factor[9]);
		//we are doing our repetitive calculations on a separate value
		correction = (inputSampleR-wearRPrev) + accumulatorSample;
		wearRPrev = inputSampleR;		
		inputSampleR += correction;
		
		wearL[9] = wearL[8]; wearL[8] = wearL[7]; wearL[7] = wearL[6]; wearL[6] = wearL[5];
		wearL[5] = wearL[4]; wearL[4] = wearL[3]; wearL[3] = wearL[2]; wearL[2] = wearL[1];
		wearL[1] = wearL[0]; wearL[0] = accumulatorSample = (inputSampleL-wearLPrev);
		
		accumulatorSample *= factor[0];
		accumulatorSample += (wearL[1] * factor[1]);
		accumulatorSample += (wearL[2] * factor[2]);
		accumulatorSample += (wearL[3] * factor[3]);
		accumulatorSample += (wearL[4] * factor[4]);
		accumulatorSample += (wearL[5] * factor[5]);
		accumulatorSample += (wearL[6] * factor[6]);
		accumulatorSample += (wearL[7] * factor[7]);
		accumulatorSample += (wearL[8] * factor[8]);
		accumulatorSample += (wearL[9] * factor[9]);
		//we are doing our repetitive calculations on a separate value		
		correction = (inputSampleL-wearLPrev) + accumulatorSample;
		wearLPrev = inputSampleL;		
		inputSampleL += correction;
		//completed Groove Wear section
		
		inputSampleL /= outputPad;
		inputSampleR /= outputPad;

		
		//back to previous plugin
		drySampleL *= dryness;
		drySampleR *= dryness;
		
		inputSampleL *= wetness;
		inputSampleR *= wetness;
		
		drySampleL += inputSampleL;
		drySampleR += inputSampleR;
		//here we combine the tanks with the dry signal
				
		//stereo 32 bit dither, made small and tidy.
		int expon; frexpf((Float32)drySampleL, &expon);
		long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		drySampleL += (dither-fpNShapeL); fpNShapeL = dither;
		frexpf((Float32)drySampleR, &expon);
		dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		drySampleR += (dither-fpNShapeR); fpNShapeR = dither;
		//end 32 bit dither

		*outputL = drySampleL;
		*outputR = drySampleR;
		//here we mix the reverb output with the dry input
		
		inputL += 1; inputR += 1; outputL += 1; outputR += 1;
	}
	return noErr;
}