aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/MacAU/BiquadOneHalf/BiquadOneHalf.cpp
blob: b31fe92cc3489008854a5d3fe71702dbd74e1afa (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/*
*	File:		BiquadOneHalf.cpp
*	
*	Version:	1.0
* 
*	Created:	12/20/19
*	
*	Copyright:  Copyright � 2019 Airwindows, All Rights Reserved
* 
*	Disclaimer:	IMPORTANT:  This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in 
*				consideration of your agreement to the following terms, and your use, installation, modification 
*				or redistribution of this Apple software constitutes acceptance of these terms.  If you do 
*				not agree with these terms, please do not use, install, modify or redistribute this Apple 
*				software.
*
*				In consideration of your agreement to abide by the following terms, and subject to these terms, 
*				Apple grants you a personal, non-exclusive license, under Apple's copyrights in this 
*				original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the 
*				Apple Software, with or without modifications, in source and/or binary forms; provided that if you 
*				redistribute the Apple Software in its entirety and without modifications, you must retain this 
*				notice and the following text and disclaimers in all such redistributions of the Apple Software. 
*				Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to 
*				endorse or promote products derived from the Apple Software without specific prior written 
*				permission from Apple.  Except as expressly stated in this notice, no other rights or 
*				licenses, express or implied, are granted by Apple herein, including but not limited to any 
*				patent rights that may be infringed by your derivative works or by other works in which the 
*				Apple Software may be incorporated.
*
*				The Apple Software is provided by Apple on an "AS IS" basis.  APPLE MAKES NO WARRANTIES, EXPRESS OR 
*				IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY 
*				AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE 
*				OR IN COMBINATION WITH YOUR PRODUCTS.
*
*				IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL 
*				DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 
*				OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, 
*				REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER 
*				UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN 
*				IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/*=============================================================================
	BiquadOneHalf.cpp
	
=============================================================================*/
#include "BiquadOneHalf.h"


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

COMPONENT_ENTRY(BiquadOneHalf)


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	BiquadOneHalf::BiquadOneHalf
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
BiquadOneHalf::BiquadOneHalf(AudioUnit component)
	: AUEffectBase(component)
{
	CreateElements();
	Globals()->UseIndexedParameters(kNumberOfParameters);
	SetParameter(kParam_One, kDefaultValue_ParamOne );
	SetParameter(kParam_Two, kDefaultValue_ParamTwo );
	SetParameter(kParam_Three, kDefaultValue_ParamThree );
	SetParameter(kParam_Four, kDefaultValue_ParamFour );
         
#if AU_DEBUG_DISPATCHER
	mDebugDispatcher = new AUDebugDispatcher (this);
#endif
	
}


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	BiquadOneHalf::GetParameterValueStrings
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult			BiquadOneHalf::GetParameterValueStrings(AudioUnitScope		inScope,
                                                                AudioUnitParameterID	inParameterID,
                                                                CFArrayRef *		outStrings)
{
        
    return kAudioUnitErr_InvalidProperty;
}



//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	BiquadOneHalf::GetParameterInfo
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult			BiquadOneHalf::GetParameterInfo(AudioUnitScope		inScope,
                                                        AudioUnitParameterID	inParameterID,
                                                        AudioUnitParameterInfo	&outParameterInfo )
{
	ComponentResult result = noErr;

	outParameterInfo.flags = 	kAudioUnitParameterFlag_IsWritable
						|		kAudioUnitParameterFlag_IsReadable;
    
    if (inScope == kAudioUnitScope_Global) {
        switch(inParameterID)
        {
			case kParam_One:
                AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false);
                outParameterInfo.unit = kAudioUnitParameterUnit_Indexed;
                outParameterInfo.minValue = 1.0;
                outParameterInfo.maxValue = 4.0;
                outParameterInfo.defaultValue = kDefaultValue_ParamOne;
                break;
            case kParam_Two:
                AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false);
                outParameterInfo.unit = kAudioUnitParameterUnit_Generic;
				outParameterInfo.flags |= kAudioUnitParameterFlag_DisplayLogarithmic;
                outParameterInfo.minValue = 0.0001;
                outParameterInfo.maxValue = 1.0;
                outParameterInfo.defaultValue = kDefaultValue_ParamTwo;
                break;
            case kParam_Three:
                AUBase::FillInParameterName (outParameterInfo, kParameterThreeName, false);
                outParameterInfo.unit = kAudioUnitParameterUnit_Generic;
				outParameterInfo.flags |= kAudioUnitParameterFlag_DisplayLogarithmic;
                outParameterInfo.minValue = 0.01;
                outParameterInfo.maxValue = 30.0;
                outParameterInfo.defaultValue = kDefaultValue_ParamThree;
                break;
			case kParam_Four:
                AUBase::FillInParameterName (outParameterInfo, kParameterFourName, false);
                outParameterInfo.unit = kAudioUnitParameterUnit_Generic;
                outParameterInfo.minValue = -1.0;
                outParameterInfo.maxValue = 1.0;
                outParameterInfo.defaultValue = kDefaultValue_ParamFour;
                break;
			default:
                result = kAudioUnitErr_InvalidParameter;
                break;
            }
	} else {
        result = kAudioUnitErr_InvalidParameter;
    }
    


	return result;
}

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	BiquadOneHalf::GetPropertyInfo
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult			BiquadOneHalf::GetPropertyInfo (AudioUnitPropertyID	inID,
                                                        AudioUnitScope		inScope,
                                                        AudioUnitElement	inElement,
                                                        UInt32 &		outDataSize,
                                                        Boolean &		outWritable)
{
	return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable);
}

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	BiquadOneHalf::GetProperty
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult			BiquadOneHalf::GetProperty(	AudioUnitPropertyID inID,
                                                        AudioUnitScope 		inScope,
                                                        AudioUnitElement 	inElement,
                                                        void *			outData )
{
	return AUEffectBase::GetProperty (inID, inScope, inElement, outData);
}

//	BiquadOneHalf::Initialize
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult BiquadOneHalf::Initialize()
{
    ComponentResult result = AUEffectBase::Initialize();
    if (result == noErr)
        Reset(kAudioUnitScope_Global, 0);
    return result;
}

#pragma mark ____BiquadOneHalfEffectKernel



//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	BiquadOneHalf::BiquadOneHalfKernel::Reset()
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
void		BiquadOneHalf::BiquadOneHalfKernel::Reset()
{
	for (int x = 0; x < 9; x++) {biquadA[x] = 0.0;biquadB[x] = 0.0;}
	flip = false;
	fpd = 17;
}

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	BiquadOneHalf::BiquadOneHalfKernel::Process
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
void		BiquadOneHalf::BiquadOneHalfKernel::Process(	const Float32 	*inSourceP,
                                                    Float32		 	*inDestP,
                                                    UInt32 			inFramesToProcess,
                                                    UInt32			inNumChannels, 
                                                    bool			&ioSilence )
{
	UInt32 nSampleFrames = inFramesToProcess;
	const Float32 *sourceP = inSourceP;
	Float32 *destP = inDestP;
	long double overallscale = 1.0;
	overallscale /= 44100.0;
	overallscale *= GetSampleRate();
	
	int type = GetParameter( kParam_One);
	
	//originalbiquad[0] = 600.0/GetSampleRate(); //fixed frequency, 600hz
	//interleavedbiquad[0] = 1200.0/GetSampleRate(); //fixed frequency, 600hz
	//using the interleaved biquad you have to specify double the frequency you otherwise would,
	//and it still must remain less than 0.5 in total

	
	biquadA[0] = GetParameter( kParam_Two )*0.499;
	if (biquadA[0] < 0.0001) biquadA[0] = 0.0001;
	
    biquadA[1] = GetParameter( kParam_Three );
	if (biquadA[1] < 0.0001) biquadA[1] = 0.0001;
	
	Float64 wet = GetParameter( kParam_Four );
	
	//biquad contains these values:
	//[0] is frequency: 0.000001 to 0.499999 is near-zero to near-Nyquist
	//[1] is resonance, 0.7071 is Butterworth. Also can't be zero
	//[2] is a0 but you need distinct ones for additional biquad instances so it's here
	//[3] is a1 but you need distinct ones for additional biquad instances so it's here
	//[4] is a2 but you need distinct ones for additional biquad instances so it's here
	//[5] is b1 but you need distinct ones for additional biquad instances so it's here
	//[6] is b2 but you need distinct ones for additional biquad instances so it's here
	//[7] is a stored delayed sample (freq and res are stored so you can move them sample by sample)
	//[8] is a stored delayed sample (you have to include the coefficient making code if you do that)
	
	//to build a dedicated filter, rename 'biquad' to whatever the new filter is, then
	//put this code either within the sample buffer (for smoothly modulating freq or res)
	//or in this 'read the controls' area (for letting you change freq and res with controls)
	//or in 'reset' if the freq and res are absolutely fixed (use GetSampleRate to define freq)
	
	if (type == 1) { //lowpass
		double K = tan(M_PI * biquadA[0]);
		double norm = 1.0 / (1.0 + K / biquadA[1] + K * K);
		biquadA[2] = K * K * norm;
		biquadA[3] = 2.0 * biquadA[2];
		biquadA[4] = biquadA[2];
		biquadA[5] = 2.0 * (K * K - 1.0) * norm;
		biquadA[6] = (1.0 - K / biquadA[1] + K * K) * norm;
	}
	
	if (type == 2) { //highpass
		double K = tan(M_PI * biquadA[0]);
		double norm = 1.0 / (1.0 + K / biquadA[1] + K * K);
		biquadA[2] = norm;
		biquadA[3] = -2.0 * biquadA[2];
		biquadA[4] = biquadA[2];
		biquadA[5] = 2.0 * (K * K - 1.0) * norm;
		biquadA[6] = (1.0 - K / biquadA[1] + K * K) * norm;
	}
	
	if (type == 3) { //bandpass
		double K = tan(M_PI * biquadA[0]);
		double norm = 1.0 / (1.0 + K / biquadA[1] + K * K);
		biquadA[2] = K / biquadA[1] * norm;
		biquadA[3] = 0.0; //bandpass can simplify the biquad kernel: leave out this multiply
		biquadA[4] = -biquadA[2];
		biquadA[5] = 2.0 * (K * K - 1.0) * norm;
		biquadA[6] = (1.0 - K / biquadA[1] + K * K) * norm;
	}
	
	if (type == 4) { //notch
		double K = tan(M_PI * biquadA[0]);
		double norm = 1.0 / (1.0 + K / biquadA[1] + K * K);
		biquadA[2] = (1.0 + K * K) * norm;
		biquadA[3] = 2.0 * (K * K - 1) * norm;
		biquadA[4] = biquadA[2];
		biquadA[5] = biquadA[3];
		biquadA[6] = (1.0 - K / biquadA[1] + K * K) * norm;
	}
	for (int x = 0; x < 9; x++) {biquadB[x] = biquadA[x];}
	
	while (nSampleFrames-- > 0) {
		long double inputSample = *sourceP;
		if (fabs(inputSample)<1.18e-37) inputSample = fpd * 1.18e-37;
		long double drySample = *sourceP;
		
		
		inputSample = sin(inputSample);
		//encode Console5: good cleanness
		
		long double tempSample;
		if (flip)
			{
				tempSample = (inputSample * biquadA[2]) + biquadA[7];
				biquadA[7] = (inputSample * biquadA[3]) - (tempSample * biquadA[5]) + biquadA[8];
				biquadA[8] = (inputSample * biquadA[4]) - (tempSample * biquadA[6]);
				inputSample = tempSample; //interleaved biquad
			}
		else
			{
				tempSample = (inputSample * biquadB[2]) + biquadB[7];
				biquadB[7] = (inputSample * biquadB[3]) - (tempSample * biquadB[5]) + biquadB[8];
				biquadB[8] = (inputSample * biquadB[4]) - (tempSample * biquadB[6]);
				inputSample = tempSample; //interleaved biquad
			}
		flip = !flip;

		
		if (inputSample > 1.0) inputSample = 1.0;
		if (inputSample < -1.0) inputSample = -1.0;
		//without this, you can get a NaN condition where it spits out DC offset at full blast!
		inputSample = asin(inputSample);
		//amplitude aspect
		
		if (wet < 1.0) {
			inputSample = (inputSample*wet) + (drySample*(1.0-fabs(wet)));
			//inv/dry/wet lets us turn LP into HP and band into notch
		}
		
		//begin 32 bit floating point dither
		int expon; frexpf((float)inputSample, &expon);
		fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
		inputSample += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62));
		//end 32 bit floating point dither
		
		*destP = inputSample;
		
		sourceP += inNumChannels; destP += inNumChannels;
	}
}

/*
 if (type == 5) { //peak, but I prefer to assemble this from bandpass/notch
 double biquad[0] = freq; // 0.000001 to 0.499999 is near-zero to near-Nyquist
 double biquad[1] = reso; // 0.000001 to >10 is resonance, 0.7071 is Butterworth
 double peakGain = boost; //negative or positive gain, in dB
 if (peakGain >= 0) {    // boost
 double V = pow(10, fabs(peakGain) / 20.0);
 double K = tan(M_PI * biquad[0]);
 double norm = 1 / (1 + 1/biquad[1] * K + K * K);
 biquad[2] = (1 + V/biquad[1] * K + K * K) * norm;
 biquad[3] = 2 * (K * K - 1) * norm;
 biquad[4] = (1 - V/biquad[1] * K + K * K) * norm;
 biquad[5] = biquad[3];
 biquad[6] = (1 - 1/biquad[1] * K + K * K) * norm;
 } else {// cut
 double V = pow(10, fabs(peakGain) / 20.0);
 double K = tan(M_PI * biquad[0]);
 double norm = 1 / (1 + V/biquad[1] * K + K * K);
 biquad[2] = (1 + 1/biquad[1] * K + K * K) * norm;
 biquad[3] = 2 * (K * K - 1) * norm;
 biquad[4] = (1 - 1/biquad[1] * K + K * K) * norm;
 biquad[5] = biquad[3];
 biquad[6] = (1 - V/biquad[1] * K + K * K) * norm;
 }
 }
 
 if (type == 6) { //lowshelf, but I prefer to assemble this from raw lowpass/highpass
 double biquad[0] = freq; // 0.000001 to 0.499999 is near-zero to near-Nyquist
 double peakGain = 0.0; //negative or positive gain, in dB
 if (peakGain >= 0) {    // boost
 double V = pow(10, fabs(peakGain) / 20.0);
 double K = tan(M_PI * biquad[0]);
 double norm = 1 / (1 + sqrt(2) * K + K * K);
 biquad[2] = (1 + sqrt(2*V) * K + V * K * K) * norm;
 biquad[3] = 2 * (V * K * K - 1) * norm;
 biquad[4] = (1 - sqrt(2*V) * K + V * K * K) * norm;
 biquad[5] = 2 * (K * K - 1) * norm;
 biquad[6] = (1 - sqrt(2) * K + K * K) * norm;
 } else {    // cut
 double V = pow(10, fabs(peakGain) / 20.0);
 double K = tan(M_PI * biquad[0]);
 double norm = 1 / (1 + sqrt(2*V) * K + V * K * K);
 biquad[2] = (1 + sqrt(2) * K + K * K) * norm;
 biquad[3] = 2 * (K * K - 1) * norm;
 biquad[4] = (1 - sqrt(2) * K + K * K) * norm;
 biquad[5] = 2 * (V * K * K - 1) * norm;
 biquad[6] = (1 - sqrt(2*V) * K + V * K * K) * norm;
 }
 }
 
 if (type == 7) { //highshelf, but I prefer to assemble this from raw lowpass/highpass
 double biquad[0] = freq; // 0.000001 to 0.499999 is near-zero to near-Nyquist
 double peakGain = 0.0; //negative or positive gain, in dB
 if (peakGain >= 0) {    // boost
 double V = pow(10, fabs(peakGain) / 20.0);
 double K = tan(M_PI * biquad[0]);
 double norm = 1 / (1 + sqrt(2) * K + K * K);
 biquad[2] = (V + sqrt(2*V) * K + K * K) * norm;
 biquad[3] = 2 * (K * K - V) * norm;
 biquad[4] = (V - sqrt(2*V) * K + K * K) * norm;
 biquad[5] = 2 * (K * K - 1) * norm;
 biquad[6] = (1 - sqrt(2) * K + K * K) * norm;
 } else {    // cut
 double V = pow(10, fabs(peakGain) / 20.0);
 double K = tan(M_PI * biquad[0]);
 double norm = 1 / (V + sqrt(2*V) * K + K * K);
 biquad[2] = (1 + sqrt(2) * K + K * K) * norm;
 biquad[3] = 2 * (K * K - 1) * norm;
 biquad[4] = (1 - sqrt(2) * K + K * K) * norm;
 biquad[5] = 2 * (K * K - V) * norm;
 biquad[6] = (V - sqrt(2*V) * K + K * K) * norm;
 }
 }
 */