aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/MacAU/BiquadOneHalf/BiquadOneHalf.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/MacAU/BiquadOneHalf/BiquadOneHalf.cpp')
-rwxr-xr-xplugins/MacAU/BiquadOneHalf/BiquadOneHalf.cpp405
1 files changed, 405 insertions, 0 deletions
diff --git a/plugins/MacAU/BiquadOneHalf/BiquadOneHalf.cpp b/plugins/MacAU/BiquadOneHalf/BiquadOneHalf.cpp
new file mode 100755
index 0000000..b31fe92
--- /dev/null
+++ b/plugins/MacAU/BiquadOneHalf/BiquadOneHalf.cpp
@@ -0,0 +1,405 @@
+/*
+* File: BiquadOneHalf.cpp
+*
+* Version: 1.0
+*
+* Created: 12/20/19
+*
+* Copyright: Copyright © 2019 Airwindows, All Rights Reserved
+*
+* Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in
+* consideration of your agreement to the following terms, and your use, installation, modification
+* or redistribution of this Apple software constitutes acceptance of these terms. If you do
+* not agree with these terms, please do not use, install, modify or redistribute this Apple
+* software.
+*
+* In consideration of your agreement to abide by the following terms, and subject to these terms,
+* Apple grants you a personal, non-exclusive license, under Apple's copyrights in this
+* original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the
+* Apple Software, with or without modifications, in source and/or binary forms; provided that if you
+* redistribute the Apple Software in its entirety and without modifications, you must retain this
+* notice and the following text and disclaimers in all such redistributions of the Apple Software.
+* Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to
+* endorse or promote products derived from the Apple Software without specific prior written
+* permission from Apple. Except as expressly stated in this notice, no other rights or
+* licenses, express or implied, are granted by Apple herein, including but not limited to any
+* patent rights that may be infringed by your derivative works or by other works in which the
+* Apple Software may be incorporated.
+*
+* The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR
+* IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
+* AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE
+* OR IN COMBINATION WITH YOUR PRODUCTS.
+*
+* IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL
+* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
+* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE,
+* REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER
+* UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN
+* IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*
+*/
+/*=============================================================================
+ BiquadOneHalf.cpp
+
+=============================================================================*/
+#include "BiquadOneHalf.h"
+
+
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+COMPONENT_ENTRY(BiquadOneHalf)
+
+
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+// BiquadOneHalf::BiquadOneHalf
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+BiquadOneHalf::BiquadOneHalf(AudioUnit component)
+ : AUEffectBase(component)
+{
+ CreateElements();
+ Globals()->UseIndexedParameters(kNumberOfParameters);
+ SetParameter(kParam_One, kDefaultValue_ParamOne );
+ SetParameter(kParam_Two, kDefaultValue_ParamTwo );
+ SetParameter(kParam_Three, kDefaultValue_ParamThree );
+ SetParameter(kParam_Four, kDefaultValue_ParamFour );
+
+#if AU_DEBUG_DISPATCHER
+ mDebugDispatcher = new AUDebugDispatcher (this);
+#endif
+
+}
+
+
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+// BiquadOneHalf::GetParameterValueStrings
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ComponentResult BiquadOneHalf::GetParameterValueStrings(AudioUnitScope inScope,
+ AudioUnitParameterID inParameterID,
+ CFArrayRef * outStrings)
+{
+
+ return kAudioUnitErr_InvalidProperty;
+}
+
+
+
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+// BiquadOneHalf::GetParameterInfo
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ComponentResult BiquadOneHalf::GetParameterInfo(AudioUnitScope inScope,
+ AudioUnitParameterID inParameterID,
+ AudioUnitParameterInfo &outParameterInfo )
+{
+ ComponentResult result = noErr;
+
+ outParameterInfo.flags = kAudioUnitParameterFlag_IsWritable
+ | kAudioUnitParameterFlag_IsReadable;
+
+ if (inScope == kAudioUnitScope_Global) {
+ switch(inParameterID)
+ {
+ case kParam_One:
+ AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false);
+ outParameterInfo.unit = kAudioUnitParameterUnit_Indexed;
+ outParameterInfo.minValue = 1.0;
+ outParameterInfo.maxValue = 4.0;
+ outParameterInfo.defaultValue = kDefaultValue_ParamOne;
+ break;
+ case kParam_Two:
+ AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false);
+ outParameterInfo.unit = kAudioUnitParameterUnit_Generic;
+ outParameterInfo.flags |= kAudioUnitParameterFlag_DisplayLogarithmic;
+ outParameterInfo.minValue = 0.0001;
+ outParameterInfo.maxValue = 1.0;
+ outParameterInfo.defaultValue = kDefaultValue_ParamTwo;
+ break;
+ case kParam_Three:
+ AUBase::FillInParameterName (outParameterInfo, kParameterThreeName, false);
+ outParameterInfo.unit = kAudioUnitParameterUnit_Generic;
+ outParameterInfo.flags |= kAudioUnitParameterFlag_DisplayLogarithmic;
+ outParameterInfo.minValue = 0.01;
+ outParameterInfo.maxValue = 30.0;
+ outParameterInfo.defaultValue = kDefaultValue_ParamThree;
+ break;
+ case kParam_Four:
+ AUBase::FillInParameterName (outParameterInfo, kParameterFourName, false);
+ outParameterInfo.unit = kAudioUnitParameterUnit_Generic;
+ outParameterInfo.minValue = -1.0;
+ outParameterInfo.maxValue = 1.0;
+ outParameterInfo.defaultValue = kDefaultValue_ParamFour;
+ break;
+ default:
+ result = kAudioUnitErr_InvalidParameter;
+ break;
+ }
+ } else {
+ result = kAudioUnitErr_InvalidParameter;
+ }
+
+
+
+ return result;
+}
+
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+// BiquadOneHalf::GetPropertyInfo
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ComponentResult BiquadOneHalf::GetPropertyInfo (AudioUnitPropertyID inID,
+ AudioUnitScope inScope,
+ AudioUnitElement inElement,
+ UInt32 & outDataSize,
+ Boolean & outWritable)
+{
+ return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable);
+}
+
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+// BiquadOneHalf::GetProperty
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ComponentResult BiquadOneHalf::GetProperty( AudioUnitPropertyID inID,
+ AudioUnitScope inScope,
+ AudioUnitElement inElement,
+ void * outData )
+{
+ return AUEffectBase::GetProperty (inID, inScope, inElement, outData);
+}
+
+// BiquadOneHalf::Initialize
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ComponentResult BiquadOneHalf::Initialize()
+{
+ ComponentResult result = AUEffectBase::Initialize();
+ if (result == noErr)
+ Reset(kAudioUnitScope_Global, 0);
+ return result;
+}
+
+#pragma mark ____BiquadOneHalfEffectKernel
+
+
+
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+// BiquadOneHalf::BiquadOneHalfKernel::Reset()
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+void BiquadOneHalf::BiquadOneHalfKernel::Reset()
+{
+ for (int x = 0; x < 9; x++) {biquadA[x] = 0.0;biquadB[x] = 0.0;}
+ flip = false;
+ fpd = 17;
+}
+
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+// BiquadOneHalf::BiquadOneHalfKernel::Process
+//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+void BiquadOneHalf::BiquadOneHalfKernel::Process( const Float32 *inSourceP,
+ Float32 *inDestP,
+ UInt32 inFramesToProcess,
+ UInt32 inNumChannels,
+ bool &ioSilence )
+{
+ UInt32 nSampleFrames = inFramesToProcess;
+ const Float32 *sourceP = inSourceP;
+ Float32 *destP = inDestP;
+ long double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= GetSampleRate();
+
+ int type = GetParameter( kParam_One);
+
+ //originalbiquad[0] = 600.0/GetSampleRate(); //fixed frequency, 600hz
+ //interleavedbiquad[0] = 1200.0/GetSampleRate(); //fixed frequency, 600hz
+ //using the interleaved biquad you have to specify double the frequency you otherwise would,
+ //and it still must remain less than 0.5 in total
+
+
+ biquadA[0] = GetParameter( kParam_Two )*0.499;
+ if (biquadA[0] < 0.0001) biquadA[0] = 0.0001;
+
+ biquadA[1] = GetParameter( kParam_Three );
+ if (biquadA[1] < 0.0001) biquadA[1] = 0.0001;
+
+ Float64 wet = GetParameter( kParam_Four );
+
+ //biquad contains these values:
+ //[0] is frequency: 0.000001 to 0.499999 is near-zero to near-Nyquist
+ //[1] is resonance, 0.7071 is Butterworth. Also can't be zero
+ //[2] is a0 but you need distinct ones for additional biquad instances so it's here
+ //[3] is a1 but you need distinct ones for additional biquad instances so it's here
+ //[4] is a2 but you need distinct ones for additional biquad instances so it's here
+ //[5] is b1 but you need distinct ones for additional biquad instances so it's here
+ //[6] is b2 but you need distinct ones for additional biquad instances so it's here
+ //[7] is a stored delayed sample (freq and res are stored so you can move them sample by sample)
+ //[8] is a stored delayed sample (you have to include the coefficient making code if you do that)
+
+ //to build a dedicated filter, rename 'biquad' to whatever the new filter is, then
+ //put this code either within the sample buffer (for smoothly modulating freq or res)
+ //or in this 'read the controls' area (for letting you change freq and res with controls)
+ //or in 'reset' if the freq and res are absolutely fixed (use GetSampleRate to define freq)
+
+ if (type == 1) { //lowpass
+ double K = tan(M_PI * biquadA[0]);
+ double norm = 1.0 / (1.0 + K / biquadA[1] + K * K);
+ biquadA[2] = K * K * norm;
+ biquadA[3] = 2.0 * biquadA[2];
+ biquadA[4] = biquadA[2];
+ biquadA[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadA[6] = (1.0 - K / biquadA[1] + K * K) * norm;
+ }
+
+ if (type == 2) { //highpass
+ double K = tan(M_PI * biquadA[0]);
+ double norm = 1.0 / (1.0 + K / biquadA[1] + K * K);
+ biquadA[2] = norm;
+ biquadA[3] = -2.0 * biquadA[2];
+ biquadA[4] = biquadA[2];
+ biquadA[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadA[6] = (1.0 - K / biquadA[1] + K * K) * norm;
+ }
+
+ if (type == 3) { //bandpass
+ double K = tan(M_PI * biquadA[0]);
+ double norm = 1.0 / (1.0 + K / biquadA[1] + K * K);
+ biquadA[2] = K / biquadA[1] * norm;
+ biquadA[3] = 0.0; //bandpass can simplify the biquad kernel: leave out this multiply
+ biquadA[4] = -biquadA[2];
+ biquadA[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadA[6] = (1.0 - K / biquadA[1] + K * K) * norm;
+ }
+
+ if (type == 4) { //notch
+ double K = tan(M_PI * biquadA[0]);
+ double norm = 1.0 / (1.0 + K / biquadA[1] + K * K);
+ biquadA[2] = (1.0 + K * K) * norm;
+ biquadA[3] = 2.0 * (K * K - 1) * norm;
+ biquadA[4] = biquadA[2];
+ biquadA[5] = biquadA[3];
+ biquadA[6] = (1.0 - K / biquadA[1] + K * K) * norm;
+ }
+ for (int x = 0; x < 9; x++) {biquadB[x] = biquadA[x];}
+
+ while (nSampleFrames-- > 0) {
+ long double inputSample = *sourceP;
+ if (fabs(inputSample)<1.18e-37) inputSample = fpd * 1.18e-37;
+ long double drySample = *sourceP;
+
+
+ inputSample = sin(inputSample);
+ //encode Console5: good cleanness
+
+ long double tempSample;
+ if (flip)
+ {
+ tempSample = (inputSample * biquadA[2]) + biquadA[7];
+ biquadA[7] = (inputSample * biquadA[3]) - (tempSample * biquadA[5]) + biquadA[8];
+ biquadA[8] = (inputSample * biquadA[4]) - (tempSample * biquadA[6]);
+ inputSample = tempSample; //interleaved biquad
+ }
+ else
+ {
+ tempSample = (inputSample * biquadB[2]) + biquadB[7];
+ biquadB[7] = (inputSample * biquadB[3]) - (tempSample * biquadB[5]) + biquadB[8];
+ biquadB[8] = (inputSample * biquadB[4]) - (tempSample * biquadB[6]);
+ inputSample = tempSample; //interleaved biquad
+ }
+ flip = !flip;
+
+
+ if (inputSample > 1.0) inputSample = 1.0;
+ if (inputSample < -1.0) inputSample = -1.0;
+ //without this, you can get a NaN condition where it spits out DC offset at full blast!
+ inputSample = asin(inputSample);
+ //amplitude aspect
+
+ if (wet < 1.0) {
+ inputSample = (inputSample*wet) + (drySample*(1.0-fabs(wet)));
+ //inv/dry/wet lets us turn LP into HP and band into notch
+ }
+
+ //begin 32 bit floating point dither
+ int expon; frexpf((float)inputSample, &expon);
+ fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
+ inputSample += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62));
+ //end 32 bit floating point dither
+
+ *destP = inputSample;
+
+ sourceP += inNumChannels; destP += inNumChannels;
+ }
+}
+
+/*
+ if (type == 5) { //peak, but I prefer to assemble this from bandpass/notch
+ double biquad[0] = freq; // 0.000001 to 0.499999 is near-zero to near-Nyquist
+ double biquad[1] = reso; // 0.000001 to >10 is resonance, 0.7071 is Butterworth
+ double peakGain = boost; //negative or positive gain, in dB
+ if (peakGain >= 0) { // boost
+ double V = pow(10, fabs(peakGain) / 20.0);
+ double K = tan(M_PI * biquad[0]);
+ double norm = 1 / (1 + 1/biquad[1] * K + K * K);
+ biquad[2] = (1 + V/biquad[1] * K + K * K) * norm;
+ biquad[3] = 2 * (K * K - 1) * norm;
+ biquad[4] = (1 - V/biquad[1] * K + K * K) * norm;
+ biquad[5] = biquad[3];
+ biquad[6] = (1 - 1/biquad[1] * K + K * K) * norm;
+ } else {// cut
+ double V = pow(10, fabs(peakGain) / 20.0);
+ double K = tan(M_PI * biquad[0]);
+ double norm = 1 / (1 + V/biquad[1] * K + K * K);
+ biquad[2] = (1 + 1/biquad[1] * K + K * K) * norm;
+ biquad[3] = 2 * (K * K - 1) * norm;
+ biquad[4] = (1 - 1/biquad[1] * K + K * K) * norm;
+ biquad[5] = biquad[3];
+ biquad[6] = (1 - V/biquad[1] * K + K * K) * norm;
+ }
+ }
+
+ if (type == 6) { //lowshelf, but I prefer to assemble this from raw lowpass/highpass
+ double biquad[0] = freq; // 0.000001 to 0.499999 is near-zero to near-Nyquist
+ double peakGain = 0.0; //negative or positive gain, in dB
+ if (peakGain >= 0) { // boost
+ double V = pow(10, fabs(peakGain) / 20.0);
+ double K = tan(M_PI * biquad[0]);
+ double norm = 1 / (1 + sqrt(2) * K + K * K);
+ biquad[2] = (1 + sqrt(2*V) * K + V * K * K) * norm;
+ biquad[3] = 2 * (V * K * K - 1) * norm;
+ biquad[4] = (1 - sqrt(2*V) * K + V * K * K) * norm;
+ biquad[5] = 2 * (K * K - 1) * norm;
+ biquad[6] = (1 - sqrt(2) * K + K * K) * norm;
+ } else { // cut
+ double V = pow(10, fabs(peakGain) / 20.0);
+ double K = tan(M_PI * biquad[0]);
+ double norm = 1 / (1 + sqrt(2*V) * K + V * K * K);
+ biquad[2] = (1 + sqrt(2) * K + K * K) * norm;
+ biquad[3] = 2 * (K * K - 1) * norm;
+ biquad[4] = (1 - sqrt(2) * K + K * K) * norm;
+ biquad[5] = 2 * (V * K * K - 1) * norm;
+ biquad[6] = (1 - sqrt(2*V) * K + V * K * K) * norm;
+ }
+ }
+
+ if (type == 7) { //highshelf, but I prefer to assemble this from raw lowpass/highpass
+ double biquad[0] = freq; // 0.000001 to 0.499999 is near-zero to near-Nyquist
+ double peakGain = 0.0; //negative or positive gain, in dB
+ if (peakGain >= 0) { // boost
+ double V = pow(10, fabs(peakGain) / 20.0);
+ double K = tan(M_PI * biquad[0]);
+ double norm = 1 / (1 + sqrt(2) * K + K * K);
+ biquad[2] = (V + sqrt(2*V) * K + K * K) * norm;
+ biquad[3] = 2 * (K * K - V) * norm;
+ biquad[4] = (V - sqrt(2*V) * K + K * K) * norm;
+ biquad[5] = 2 * (K * K - 1) * norm;
+ biquad[6] = (1 - sqrt(2) * K + K * K) * norm;
+ } else { // cut
+ double V = pow(10, fabs(peakGain) / 20.0);
+ double K = tan(M_PI * biquad[0]);
+ double norm = 1 / (V + sqrt(2*V) * K + K * K);
+ biquad[2] = (1 + sqrt(2) * K + K * K) * norm;
+ biquad[3] = 2 * (K * K - 1) * norm;
+ biquad[4] = (1 - sqrt(2) * K + K * K) * norm;
+ biquad[5] = 2 * (K * K - V) * norm;
+ biquad[6] = (V - sqrt(2*V) * K + K * K) * norm;
+ }
+ }
+ */
+