aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/WinVST/Pop/PopProc.cpp
diff options
context:
space:
mode:
authorChris Johnson <jinx6568@sover.net>2018-09-16 19:23:16 -0400
committerChris Johnson <jinx6568@sover.net>2018-09-16 19:23:16 -0400
commit5d63025311019c9e47e2a49ec82bde1585afd5c5 (patch)
tree6ef13551eb9329e7c966278aa21d4b781410dd46 /plugins/WinVST/Pop/PopProc.cpp
parent9ecd9a8c01bea3c02f6e94cf67dd7c4ad12d1e34 (diff)
downloadairwindows-lv2-port-5d63025311019c9e47e2a49ec82bde1585afd5c5.tar.gz
airwindows-lv2-port-5d63025311019c9e47e2a49ec82bde1585afd5c5.tar.bz2
airwindows-lv2-port-5d63025311019c9e47e2a49ec82bde1585afd5c5.zip
Pop
Diffstat (limited to 'plugins/WinVST/Pop/PopProc.cpp')
-rwxr-xr-xplugins/WinVST/Pop/PopProc.cpp588
1 files changed, 588 insertions, 0 deletions
diff --git a/plugins/WinVST/Pop/PopProc.cpp b/plugins/WinVST/Pop/PopProc.cpp
new file mode 100755
index 0000000..ae7dd4d
--- /dev/null
+++ b/plugins/WinVST/Pop/PopProc.cpp
@@ -0,0 +1,588 @@
+/* ========================================
+ * Pop - Pop.h
+ * Copyright (c) 2016 airwindows, All rights reserved
+ * ======================================== */
+
+#ifndef __Pop_H
+#include "Pop.h"
+#endif
+
+void Pop::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames)
+{
+ float* in1 = inputs[0];
+ float* in2 = inputs[1];
+ float* out1 = outputs[0];
+ float* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+
+ double highGainOffset = pow(A,2)*0.023;
+ double threshold = 1.001 - (1.0-pow(1.0-A,5));
+ double muMakeupGain = sqrt(1.0 / threshold);
+ //gain settings around threshold
+ double release = (A*100000.0) + 300000.0;
+ int maxdelay = (int)(1450.0 * overallscale);
+ if (maxdelay > 9999) maxdelay = 9999;
+ release /= overallscale;
+ double fastest = sqrt(release);
+ //speed settings around release
+ double output = B;
+ double wet = C;
+ // µ µ µ µ µ µ µ µ µ µ µ µ is the kitten song o/~
+
+ while (--sampleFrames >= 0)
+ {
+ long double inputSampleL = *in1;
+ long double inputSampleR = *in2;
+
+ static int noisesourceL = 0;
+ static int noisesourceR = 850010;
+ int residue;
+ double applyresidue;
+
+ noisesourceL = noisesourceL % 1700021; noisesourceL++;
+ residue = noisesourceL * noisesourceL;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL += applyresidue;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ inputSampleL -= applyresidue;
+ }
+
+ noisesourceR = noisesourceR % 1700021; noisesourceR++;
+ residue = noisesourceR * noisesourceR;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR += applyresidue;
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ inputSampleR -= applyresidue;
+ }
+ //for live air, we always apply the dither noise. Then, if our result is
+ //effectively digital black, we'll subtract it aPop. We want a 'air' hiss
+ long double drySampleL = inputSampleL;
+ long double drySampleR = inputSampleR;
+
+ dL[delay] = inputSampleL;
+ dR[delay] = inputSampleR;
+ delay--;
+ if (delay < 0 || delay > maxdelay) {delay = maxdelay;}
+ //yes this is a second bounds check. it's cheap, check EVERY time
+ inputSampleL = (inputSampleL * thickenL) + (dL[delay] * (1.0-thickenL));
+ inputSampleR = (inputSampleR * thickenR) + (dR[delay] * (1.0-thickenR));
+
+ long double lowestSampleL = inputSampleL;
+ if (fabs(inputSampleL) > fabs(previousL)) lowestSampleL = previousL;
+ if (fabs(lowestSampleL) > fabs(previous2L)) lowestSampleL = (lowestSampleL + previous2L) / 1.99;
+ if (fabs(lowestSampleL) > fabs(previous3L)) lowestSampleL = (lowestSampleL + previous3L) / 1.98;
+ if (fabs(lowestSampleL) > fabs(previous4L)) lowestSampleL = (lowestSampleL + previous4L) / 1.97;
+ if (fabs(lowestSampleL) > fabs(previous5L)) lowestSampleL = (lowestSampleL + previous5L) / 1.96;
+ previous5L = previous4L;
+ previous4L = previous3L;
+ previous3L = previous2L;
+ previous2L = previousL;
+ previousL = inputSampleL;
+ inputSampleL *= muMakeupGain;
+ double punchinessL = 0.95-fabs(inputSampleL*0.08);
+ if (punchinessL < 0.65) punchinessL = 0.65;
+
+ long double lowestSampleR = inputSampleR;
+ if (fabs(inputSampleR) > fabs(previousR)) lowestSampleR = previousR;
+ if (fabs(lowestSampleR) > fabs(previous2R)) lowestSampleR = (lowestSampleR + previous2R) / 1.99;
+ if (fabs(lowestSampleR) > fabs(previous3R)) lowestSampleR = (lowestSampleR + previous3R) / 1.98;
+ if (fabs(lowestSampleR) > fabs(previous4R)) lowestSampleR = (lowestSampleR + previous4R) / 1.97;
+ if (fabs(lowestSampleR) > fabs(previous5R)) lowestSampleR = (lowestSampleR + previous5R) / 1.96;
+ previous5R = previous4R;
+ previous4R = previous3R;
+ previous3R = previous2R;
+ previous2R = previousR;
+ previousR = inputSampleR;
+ inputSampleR *= muMakeupGain;
+ double punchinessR = 0.95-fabs(inputSampleR*0.08);
+ if (punchinessR < 0.65) punchinessR = 0.65;
+
+ //adjust coefficients for L
+ if (flip)
+ {
+ if (fabs(lowestSampleL) > threshold)
+ {
+ muVaryL = threshold / fabs(lowestSampleL);
+ muAttackL = sqrt(fabs(muSpeedAL));
+ muCoefficientAL = muCoefficientAL * (muAttackL-1.0);
+ if (muVaryL < threshold)
+ {
+ muCoefficientAL = muCoefficientAL + threshold;
+ }
+ else
+ {
+ muCoefficientAL = muCoefficientAL + muVaryL;
+ }
+ muCoefficientAL = muCoefficientAL / muAttackL;
+ }
+ else
+ {
+ muCoefficientAL = muCoefficientAL * ((muSpeedAL * muSpeedAL)-1.0);
+ muCoefficientAL = muCoefficientAL + 1.0;
+ muCoefficientAL = muCoefficientAL / (muSpeedAL * muSpeedAL);
+ }
+ muNewSpeedL = muSpeedAL * (muSpeedAL-1);
+ muNewSpeedL = muNewSpeedL + fabs(lowestSampleL*release)+fastest;
+ muSpeedAL = muNewSpeedL / muSpeedAL;
+ }
+ else
+ {
+ if (fabs(lowestSampleL) > threshold)
+ {
+ muVaryL = threshold / fabs(lowestSampleL);
+ muAttackL = sqrt(fabs(muSpeedBL));
+ muCoefficientBL = muCoefficientBL * (muAttackL-1);
+ if (muVaryL < threshold)
+ {
+ muCoefficientBL = muCoefficientBL + threshold;
+ }
+ else
+ {
+ muCoefficientBL = muCoefficientBL + muVaryL;
+ }
+ muCoefficientBL = muCoefficientBL / muAttackL;
+ }
+ else
+ {
+ muCoefficientBL = muCoefficientBL * ((muSpeedBL * muSpeedBL)-1.0);
+ muCoefficientBL = muCoefficientBL + 1.0;
+ muCoefficientBL = muCoefficientBL / (muSpeedBL * muSpeedBL);
+ }
+ muNewSpeedL = muSpeedBL * (muSpeedBL-1);
+ muNewSpeedL = muNewSpeedL + fabs(lowestSampleL*release)+fastest;
+ muSpeedBL = muNewSpeedL / muSpeedBL;
+ }
+ //got coefficients, adjusted speeds for L
+
+ //adjust coefficients for R
+ if (flip)
+ {
+ if (fabs(lowestSampleR) > threshold)
+ {
+ muVaryR = threshold / fabs(lowestSampleR);
+ muAttackR = sqrt(fabs(muSpeedAR));
+ muCoefficientAR = muCoefficientAR * (muAttackR-1.0);
+ if (muVaryR < threshold)
+ {
+ muCoefficientAR = muCoefficientAR + threshold;
+ }
+ else
+ {
+ muCoefficientAR = muCoefficientAR + muVaryR;
+ }
+ muCoefficientAR = muCoefficientAR / muAttackR;
+ }
+ else
+ {
+ muCoefficientAR = muCoefficientAR * ((muSpeedAR * muSpeedAR)-1.0);
+ muCoefficientAR = muCoefficientAR + 1.0;
+ muCoefficientAR = muCoefficientAR / (muSpeedAR * muSpeedAR);
+ }
+ muNewSpeedR = muSpeedAR * (muSpeedAR-1);
+ muNewSpeedR = muNewSpeedR + fabs(lowestSampleR*release)+fastest;
+ muSpeedAR = muNewSpeedR / muSpeedAR;
+ }
+ else
+ {
+ if (fabs(lowestSampleR) > threshold)
+ {
+ muVaryR = threshold / fabs(lowestSampleR);
+ muAttackR = sqrt(fabs(muSpeedBR));
+ muCoefficientBR = muCoefficientBR * (muAttackR-1);
+ if (muVaryR < threshold)
+ {
+ muCoefficientBR = muCoefficientBR + threshold;
+ }
+ else
+ {
+ muCoefficientBR = muCoefficientBR + muVaryR;
+ }
+ muCoefficientBR = muCoefficientBR / muAttackR;
+ }
+ else
+ {
+ muCoefficientBR = muCoefficientBR * ((muSpeedBR * muSpeedBR)-1.0);
+ muCoefficientBR = muCoefficientBR + 1.0;
+ muCoefficientBR = muCoefficientBR / (muSpeedBR * muSpeedBR);
+ }
+ muNewSpeedR = muSpeedBR * (muSpeedBR-1);
+ muNewSpeedR = muNewSpeedR + fabs(lowestSampleR*release)+fastest;
+ muSpeedBR = muNewSpeedR / muSpeedBR;
+ }
+ //got coefficients, adjusted speeds for R
+
+ long double coefficientL = highGainOffset;
+ if (flip) coefficientL += pow(muCoefficientAL,2);
+ else coefficientL += pow(muCoefficientBL,2);
+ inputSampleL *= coefficientL;
+ thickenL = (coefficientL/5)+punchinessL;//0.80;
+ thickenL = (1.0-wet)+(wet*thickenL);
+
+ long double coefficientR = highGainOffset;
+ if (flip) coefficientR += pow(muCoefficientAR,2);
+ else coefficientR += pow(muCoefficientBR,2);
+ inputSampleR *= coefficientR;
+ thickenR = (coefficientR/5)+punchinessR;//0.80;
+ thickenR = (1.0-wet)+(wet*thickenR);
+ //applied compression with vari-vari-µ-µ-µ-µ-µ-µ-is-the-kitten-song o/~
+ //applied gain correction to control output level- tends to constrain sound rather than inflate it
+
+ long double bridgerectifier = fabs(inputSampleL);
+ if (bridgerectifier > 1.2533141373155) bridgerectifier = 1.2533141373155;
+ bridgerectifier = sin(bridgerectifier * fabs(bridgerectifier)) / ((bridgerectifier == 0.0) ?1:fabs(bridgerectifier));
+ //using Spiral instead of Density algorithm
+ if (inputSampleL > 0) inputSampleL = (inputSampleL*coefficientL)+(bridgerectifier*(1-coefficientL));
+ else inputSampleL = (inputSampleL*coefficientL)-(bridgerectifier*(1-coefficientL));
+ //second stage of overdrive to prevent overs and allow bloody loud extremeness
+
+ bridgerectifier = fabs(inputSampleR);
+ if (bridgerectifier > 1.2533141373155) bridgerectifier = 1.2533141373155;
+ bridgerectifier = sin(bridgerectifier * fabs(bridgerectifier)) / ((bridgerectifier == 0.0) ?1:fabs(bridgerectifier));
+ //using Spiral instead of Density algorithm
+ if (inputSampleR > 0) inputSampleR = (inputSampleR*coefficientR)+(bridgerectifier*(1-coefficientR));
+ else inputSampleR = (inputSampleR*coefficientR)-(bridgerectifier*(1-coefficientR));
+ //second stage of overdrive to prevent overs and allow bloody loud extremeness
+
+ flip = !flip;
+
+ if (output < 1.0) {inputSampleL *= output;inputSampleR *= output;}
+ if (wet<1.0) {
+ inputSampleL = (drySampleL*(1.0-wet))+(inputSampleL*wet);
+ inputSampleR = (drySampleR*(1.0-wet))+(inputSampleR*wet);
+ }
+
+ //noise shaping to 32-bit floating point
+ float fpTemp = inputSampleL;
+ fpNShapeL += (inputSampleL-fpTemp);
+ inputSampleL += fpNShapeL;
+ //if this confuses you look at the wordlength for fpTemp :)
+ fpTemp = inputSampleR;
+ fpNShapeR += (inputSampleR-fpTemp);
+ inputSampleR += fpNShapeR;
+ //for deeper space and warmth, we try a non-oscillating noise shaping
+ //that is kind of ruthless: it will forever retain the rounding errors
+ //except we'll dial it back a hair at the end of every buffer processed
+ //end noise shaping on 32 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+ fpNShapeL *= 0.999999;
+ fpNShapeR *= 0.999999;
+ //we will just delicately dial back the FP noise shaping, not even every sample
+ //this is a good place to put subtle 'no runaway' calculations, though bear in mind
+ //that it will be called more often when you use shorter sample buffers in the DAW.
+ //So, very low latency operation will call these calculations more often.
+}
+
+void Pop::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames)
+{
+ double* in1 = inputs[0];
+ double* in2 = inputs[1];
+ double* out1 = outputs[0];
+ double* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+
+ double highGainOffset = pow(A,2)*0.023;
+ double threshold = 1.001 - (1.0-pow(1.0-A,5));
+ double muMakeupGain = sqrt(1.0 / threshold);
+ //gain settings around threshold
+ double release = (A*100000.0) + 300000.0;
+ int maxdelay = (int)(1450.0 * overallscale);
+ if (maxdelay > 9999) maxdelay = 9999;
+ release /= overallscale;
+ double fastest = sqrt(release);
+ //speed settings around release
+ double output = B;
+ double wet = C;
+ // µ µ µ µ µ µ µ µ µ µ µ µ is the kitten song o/~
+
+ while (--sampleFrames >= 0)
+ {
+ long double inputSampleL = *in1;
+ long double inputSampleR = *in2;
+
+ static int noisesourceL = 0;
+ static int noisesourceR = 850010;
+ int residue;
+ double applyresidue;
+
+ noisesourceL = noisesourceL % 1700021; noisesourceL++;
+ residue = noisesourceL * noisesourceL;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL += applyresidue;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ inputSampleL -= applyresidue;
+ }
+
+ noisesourceR = noisesourceR % 1700021; noisesourceR++;
+ residue = noisesourceR * noisesourceR;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR += applyresidue;
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ inputSampleR -= applyresidue;
+ }
+ //for live air, we always apply the dither noise. Then, if our result is
+ //effectively digital black, we'll subtract it aPop. We want a 'air' hiss
+ long double drySampleL = inputSampleL;
+ long double drySampleR = inputSampleR;
+
+ dL[delay] = inputSampleL;
+ dR[delay] = inputSampleR;
+ delay--;
+ if (delay < 0 || delay > maxdelay) {delay = maxdelay;}
+ //yes this is a second bounds check. it's cheap, check EVERY time
+ inputSampleL = (inputSampleL * thickenL) + (dL[delay] * (1.0-thickenL));
+ inputSampleR = (inputSampleR * thickenR) + (dR[delay] * (1.0-thickenR));
+
+ long double lowestSampleL = inputSampleL;
+ if (fabs(inputSampleL) > fabs(previousL)) lowestSampleL = previousL;
+ if (fabs(lowestSampleL) > fabs(previous2L)) lowestSampleL = (lowestSampleL + previous2L) / 1.99;
+ if (fabs(lowestSampleL) > fabs(previous3L)) lowestSampleL = (lowestSampleL + previous3L) / 1.98;
+ if (fabs(lowestSampleL) > fabs(previous4L)) lowestSampleL = (lowestSampleL + previous4L) / 1.97;
+ if (fabs(lowestSampleL) > fabs(previous5L)) lowestSampleL = (lowestSampleL + previous5L) / 1.96;
+ previous5L = previous4L;
+ previous4L = previous3L;
+ previous3L = previous2L;
+ previous2L = previousL;
+ previousL = inputSampleL;
+ inputSampleL *= muMakeupGain;
+ double punchinessL = 0.95-fabs(inputSampleL*0.08);
+ if (punchinessL < 0.65) punchinessL = 0.65;
+
+ long double lowestSampleR = inputSampleR;
+ if (fabs(inputSampleR) > fabs(previousR)) lowestSampleR = previousR;
+ if (fabs(lowestSampleR) > fabs(previous2R)) lowestSampleR = (lowestSampleR + previous2R) / 1.99;
+ if (fabs(lowestSampleR) > fabs(previous3R)) lowestSampleR = (lowestSampleR + previous3R) / 1.98;
+ if (fabs(lowestSampleR) > fabs(previous4R)) lowestSampleR = (lowestSampleR + previous4R) / 1.97;
+ if (fabs(lowestSampleR) > fabs(previous5R)) lowestSampleR = (lowestSampleR + previous5R) / 1.96;
+ previous5R = previous4R;
+ previous4R = previous3R;
+ previous3R = previous2R;
+ previous2R = previousR;
+ previousR = inputSampleR;
+ inputSampleR *= muMakeupGain;
+ double punchinessR = 0.95-fabs(inputSampleR*0.08);
+ if (punchinessR < 0.65) punchinessR = 0.65;
+
+ //adjust coefficients for L
+ if (flip)
+ {
+ if (fabs(lowestSampleL) > threshold)
+ {
+ muVaryL = threshold / fabs(lowestSampleL);
+ muAttackL = sqrt(fabs(muSpeedAL));
+ muCoefficientAL = muCoefficientAL * (muAttackL-1.0);
+ if (muVaryL < threshold)
+ {
+ muCoefficientAL = muCoefficientAL + threshold;
+ }
+ else
+ {
+ muCoefficientAL = muCoefficientAL + muVaryL;
+ }
+ muCoefficientAL = muCoefficientAL / muAttackL;
+ }
+ else
+ {
+ muCoefficientAL = muCoefficientAL * ((muSpeedAL * muSpeedAL)-1.0);
+ muCoefficientAL = muCoefficientAL + 1.0;
+ muCoefficientAL = muCoefficientAL / (muSpeedAL * muSpeedAL);
+ }
+ muNewSpeedL = muSpeedAL * (muSpeedAL-1);
+ muNewSpeedL = muNewSpeedL + fabs(lowestSampleL*release)+fastest;
+ muSpeedAL = muNewSpeedL / muSpeedAL;
+ }
+ else
+ {
+ if (fabs(lowestSampleL) > threshold)
+ {
+ muVaryL = threshold / fabs(lowestSampleL);
+ muAttackL = sqrt(fabs(muSpeedBL));
+ muCoefficientBL = muCoefficientBL * (muAttackL-1);
+ if (muVaryL < threshold)
+ {
+ muCoefficientBL = muCoefficientBL + threshold;
+ }
+ else
+ {
+ muCoefficientBL = muCoefficientBL + muVaryL;
+ }
+ muCoefficientBL = muCoefficientBL / muAttackL;
+ }
+ else
+ {
+ muCoefficientBL = muCoefficientBL * ((muSpeedBL * muSpeedBL)-1.0);
+ muCoefficientBL = muCoefficientBL + 1.0;
+ muCoefficientBL = muCoefficientBL / (muSpeedBL * muSpeedBL);
+ }
+ muNewSpeedL = muSpeedBL * (muSpeedBL-1);
+ muNewSpeedL = muNewSpeedL + fabs(lowestSampleL*release)+fastest;
+ muSpeedBL = muNewSpeedL / muSpeedBL;
+ }
+ //got coefficients, adjusted speeds for L
+
+ //adjust coefficients for R
+ if (flip)
+ {
+ if (fabs(lowestSampleR) > threshold)
+ {
+ muVaryR = threshold / fabs(lowestSampleR);
+ muAttackR = sqrt(fabs(muSpeedAR));
+ muCoefficientAR = muCoefficientAR * (muAttackR-1.0);
+ if (muVaryR < threshold)
+ {
+ muCoefficientAR = muCoefficientAR + threshold;
+ }
+ else
+ {
+ muCoefficientAR = muCoefficientAR + muVaryR;
+ }
+ muCoefficientAR = muCoefficientAR / muAttackR;
+ }
+ else
+ {
+ muCoefficientAR = muCoefficientAR * ((muSpeedAR * muSpeedAR)-1.0);
+ muCoefficientAR = muCoefficientAR + 1.0;
+ muCoefficientAR = muCoefficientAR / (muSpeedAR * muSpeedAR);
+ }
+ muNewSpeedR = muSpeedAR * (muSpeedAR-1);
+ muNewSpeedR = muNewSpeedR + fabs(lowestSampleR*release)+fastest;
+ muSpeedAR = muNewSpeedR / muSpeedAR;
+ }
+ else
+ {
+ if (fabs(lowestSampleR) > threshold)
+ {
+ muVaryR = threshold / fabs(lowestSampleR);
+ muAttackR = sqrt(fabs(muSpeedBR));
+ muCoefficientBR = muCoefficientBR * (muAttackR-1);
+ if (muVaryR < threshold)
+ {
+ muCoefficientBR = muCoefficientBR + threshold;
+ }
+ else
+ {
+ muCoefficientBR = muCoefficientBR + muVaryR;
+ }
+ muCoefficientBR = muCoefficientBR / muAttackR;
+ }
+ else
+ {
+ muCoefficientBR = muCoefficientBR * ((muSpeedBR * muSpeedBR)-1.0);
+ muCoefficientBR = muCoefficientBR + 1.0;
+ muCoefficientBR = muCoefficientBR / (muSpeedBR * muSpeedBR);
+ }
+ muNewSpeedR = muSpeedBR * (muSpeedBR-1);
+ muNewSpeedR = muNewSpeedR + fabs(lowestSampleR*release)+fastest;
+ muSpeedBR = muNewSpeedR / muSpeedBR;
+ }
+ //got coefficients, adjusted speeds for R
+
+ long double coefficientL = highGainOffset;
+ if (flip) coefficientL += pow(muCoefficientAL,2);
+ else coefficientL += pow(muCoefficientBL,2);
+ inputSampleL *= coefficientL;
+ thickenL = (coefficientL/5)+punchinessL;//0.80;
+ thickenL = (1.0-wet)+(wet*thickenL);
+
+ long double coefficientR = highGainOffset;
+ if (flip) coefficientR += pow(muCoefficientAR,2);
+ else coefficientR += pow(muCoefficientBR,2);
+ inputSampleR *= coefficientR;
+ thickenR = (coefficientR/5)+punchinessR;//0.80;
+ thickenR = (1.0-wet)+(wet*thickenR);
+ //applied compression with vari-vari-µ-µ-µ-µ-µ-µ-is-the-kitten-song o/~
+ //applied gain correction to control output level- tends to constrain sound rather than inflate it
+
+ long double bridgerectifier = fabs(inputSampleL);
+ if (bridgerectifier > 1.2533141373155) bridgerectifier = 1.2533141373155;
+ bridgerectifier = sin(bridgerectifier * fabs(bridgerectifier)) / ((bridgerectifier == 0.0) ?1:fabs(bridgerectifier));
+ //using Spiral instead of Density algorithm
+ if (inputSampleL > 0) inputSampleL = (inputSampleL*coefficientL)+(bridgerectifier*(1-coefficientL));
+ else inputSampleL = (inputSampleL*coefficientL)-(bridgerectifier*(1-coefficientL));
+ //second stage of overdrive to prevent overs and allow bloody loud extremeness
+
+ bridgerectifier = fabs(inputSampleR);
+ if (bridgerectifier > 1.2533141373155) bridgerectifier = 1.2533141373155;
+ bridgerectifier = sin(bridgerectifier * fabs(bridgerectifier)) / ((bridgerectifier == 0.0) ?1:fabs(bridgerectifier));
+ //using Spiral instead of Density algorithm
+ if (inputSampleR > 0) inputSampleR = (inputSampleR*coefficientR)+(bridgerectifier*(1-coefficientR));
+ else inputSampleR = (inputSampleR*coefficientR)-(bridgerectifier*(1-coefficientR));
+ //second stage of overdrive to prevent overs and allow bloody loud extremeness
+
+ flip = !flip;
+
+ if (output < 1.0) {inputSampleL *= output;inputSampleR *= output;}
+ if (wet<1.0) {
+ inputSampleL = (drySampleL*(1.0-wet))+(inputSampleL*wet);
+ inputSampleR = (drySampleR*(1.0-wet))+(inputSampleR*wet);
+ }
+
+ //noise shaping to 64-bit floating point
+ double fpTemp = inputSampleL;
+ fpNShapeL += (inputSampleL-fpTemp);
+ inputSampleL += fpNShapeL;
+ //if this confuses you look at the wordlength for fpTemp :)
+ fpTemp = inputSampleR;
+ fpNShapeR += (inputSampleR-fpTemp);
+ inputSampleR += fpNShapeR;
+ //for deeper space and warmth, we try a non-oscillating noise shaping
+ //that is kind of ruthless: it will forever retain the rounding errors
+ //except we'll dial it back a hair at the end of every buffer processed
+ //end noise shaping on 64 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+ fpNShapeL *= 0.999999;
+ fpNShapeR *= 0.999999;
+ //we will just delicately dial back the FP noise shaping, not even every sample
+ //this is a good place to put subtle 'no runaway' calculations, though bear in mind
+ //that it will be called more often when you use shorter sample buffers in the DAW.
+ //So, very low latency operation will call these calculations more often.
+}