aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/LinuxVST
diff options
context:
space:
mode:
authorChris Johnson <jinx6568@sover.net>2019-09-22 22:52:35 -0400
committerChris Johnson <jinx6568@sover.net>2019-09-22 22:52:35 -0400
commit8209ad4ceba452b470c1d6c347612701c4901dec (patch)
tree212ad0de51cfc391521001be6772b05dcb7d1882 /plugins/LinuxVST
parent25083c28de46d5665fd0f10349f004d17a43df06 (diff)
downloadairwindows-lv2-port-8209ad4ceba452b470c1d6c347612701c4901dec.tar.gz
airwindows-lv2-port-8209ad4ceba452b470c1d6c347612701c4901dec.tar.bz2
airwindows-lv2-port-8209ad4ceba452b470c1d6c347612701c4901dec.zip
Biquad2
Diffstat (limited to 'plugins/LinuxVST')
-rwxr-xr-xplugins/LinuxVST/CMakeLists.txt1
-rwxr-xr-xplugins/LinuxVST/src/Biquad2/Biquad2.cpp163
-rwxr-xr-xplugins/LinuxVST/src/Biquad2/Biquad2.h86
-rwxr-xr-xplugins/LinuxVST/src/Biquad2/Biquad2Proc.cpp432
4 files changed, 682 insertions, 0 deletions
diff --git a/plugins/LinuxVST/CMakeLists.txt b/plugins/LinuxVST/CMakeLists.txt
index e4f65e0..9ec2b85 100755
--- a/plugins/LinuxVST/CMakeLists.txt
+++ b/plugins/LinuxVST/CMakeLists.txt
@@ -19,6 +19,7 @@ add_airwindows_plugin(Average)
add_airwindows_plugin(BassDrive)
add_airwindows_plugin(BassKit)
add_airwindows_plugin(Biquad)
+add_airwindows_plugin(Biquad2)
add_airwindows_plugin(Bite)
add_airwindows_plugin(BitGlitter)
add_airwindows_plugin(BitShiftGain)
diff --git a/plugins/LinuxVST/src/Biquad2/Biquad2.cpp b/plugins/LinuxVST/src/Biquad2/Biquad2.cpp
new file mode 100755
index 0000000..83e1664
--- /dev/null
+++ b/plugins/LinuxVST/src/Biquad2/Biquad2.cpp
@@ -0,0 +1,163 @@
+/* ========================================
+ * Biquad2 - Biquad2.h
+ * Copyright (c) 2016 airwindows, All rights reserved
+ * ======================================== */
+
+#ifndef __Biquad2_H
+#include "Biquad2.h"
+#endif
+
+AudioEffect* createEffectInstance(audioMasterCallback audioMaster) {return new Biquad2(audioMaster);}
+
+Biquad2::Biquad2(audioMasterCallback audioMaster) :
+ AudioEffectX(audioMaster, kNumPrograms, kNumParameters)
+{
+ for (int x = 0; x < 15; x++) {biquad[x] = 0.0;}
+ for (int x = 0; x < 11; x++) {bL[x] = 0.0; bR[x] = 0.0; f[x] = 0.0;}
+ frequencychase = 0.0015;
+ resonancechase = 0.001;
+ outputchase = 1.0;
+ wetchase = 1.0;
+
+ frequencysetting = -1.0;
+ resonancesetting = -1.0;
+ outputsetting = -1.0;
+ wetsetting = -2.0; //-1.0 is a possible setting here and this forces an update on chasespeed
+
+ chasespeed = 500.0;
+ A = 1.0;
+ B = 0.5;
+ C = 0.5;
+ D = 1.0;
+ E = 1.0;
+ fpd = 17;
+ //this is reset: values being initialized only once. Startup values, whatever they are.
+
+ _canDo.insert("plugAsChannelInsert"); // plug-in can be used as a channel insert effect.
+ _canDo.insert("plugAsSend"); // plug-in can be used as a send effect.
+ _canDo.insert("x2in2out");
+ setNumInputs(kNumInputs);
+ setNumOutputs(kNumOutputs);
+ setUniqueID(kUniqueId);
+ canProcessReplacing(); // supports output replacing
+ canDoubleReplacing(); // supports double precision processing
+ programsAreChunks(true);
+ vst_strncpy (_programName, "Default", kVstMaxProgNameLen); // default program name
+}
+
+Biquad2::~Biquad2() {}
+VstInt32 Biquad2::getVendorVersion () {return 1000;}
+void Biquad2::setProgramName(char *name) {vst_strncpy (_programName, name, kVstMaxProgNameLen);}
+void Biquad2::getProgramName(char *name) {vst_strncpy (name, _programName, kVstMaxProgNameLen);}
+//airwindows likes to ignore this stuff. Make your own programs, and make a different plugin rather than
+//trying to do versioning and preventing people from using older versions. Maybe they like the old one!
+
+static float pinParameter(float data)
+{
+ if (data < 0.0f) return 0.0f;
+ if (data > 1.0f) return 1.0f;
+ return data;
+}
+
+VstInt32 Biquad2::getChunk (void** data, bool isPreset)
+{
+ float *chunkData = (float *)calloc(kNumParameters, sizeof(float));
+ chunkData[0] = A;
+ chunkData[1] = B;
+ chunkData[2] = C;
+ chunkData[3] = D;
+ chunkData[4] = E;
+ /* Note: The way this is set up, it will break if you manage to save settings on an Intel
+ machine and load them on a PPC Mac. However, it's fine if you stick to the machine you
+ started with. */
+
+ *data = chunkData;
+ return kNumParameters * sizeof(float);
+}
+
+VstInt32 Biquad2::setChunk (void* data, VstInt32 byteSize, bool isPreset)
+{
+ float *chunkData = (float *)data;
+ A = pinParameter(chunkData[0]);
+ B = pinParameter(chunkData[1]);
+ C = pinParameter(chunkData[2]);
+ D = pinParameter(chunkData[3]);
+ E = pinParameter(chunkData[4]);
+ /* We're ignoring byteSize as we found it to be a filthy liar */
+
+ /* calculate any other fields you need here - you could copy in
+ code from setParameter() here. */
+ return 0;
+}
+
+void Biquad2::setParameter(VstInt32 index, float value) {
+ switch (index) {
+ case kParamA: A = value; break;
+ case kParamB: B = value; break;
+ case kParamC: C = value; break;
+ case kParamD: D = value; break;
+ case kParamE: E = value; break;
+ default: throw; // unknown parameter, shouldn't happen!
+ }
+}
+
+float Biquad2::getParameter(VstInt32 index) {
+ switch (index) {
+ case kParamA: return A; break;
+ case kParamB: return B; break;
+ case kParamC: return C; break;
+ case kParamD: return D; break;
+ case kParamE: return E; break;
+ default: break; // unknown parameter, shouldn't happen!
+ } return 0.0; //we only need to update the relevant name, this is simple to manage
+}
+
+void Biquad2::getParameterName(VstInt32 index, char *text) {
+ switch (index) {
+ case kParamA: vst_strncpy (text, "Type", kVstMaxParamStrLen); break;
+ case kParamB: vst_strncpy (text, "Freq", kVstMaxParamStrLen); break;
+ case kParamC: vst_strncpy (text, "Q", kVstMaxParamStrLen); break;
+ case kParamD: vst_strncpy (text, "Output", kVstMaxParamStrLen); break;
+ case kParamE: vst_strncpy (text, "Inv/Wet", kVstMaxParamStrLen); break;
+ default: break; // unknown parameter, shouldn't happen!
+ } //this is our labels for displaying in the VST host
+}
+
+void Biquad2::getParameterDisplay(VstInt32 index, char *text) {
+ switch (index) {
+ case kParamA: float2string ((float)ceil((A*3.999)+0.00001), text, kVstMaxParamStrLen); break;
+ case kParamB: float2string ((B*B*0.9999)+0.0001, text, kVstMaxParamStrLen); break;
+ case kParamC: float2string ((C*C*49.99)+0.01, text, kVstMaxParamStrLen); break;
+ case kParamD: float2string (D, text, kVstMaxParamStrLen); break;
+ case kParamE: float2string ((E*2.0)-1.0, text, kVstMaxParamStrLen); break;
+ default: break; // unknown parameter, shouldn't happen!
+ } //this displays the values and handles 'popups' where it's discrete choices
+}
+
+void Biquad2::getParameterLabel(VstInt32 index, char *text) {
+ switch (index) {
+ case kParamA: vst_strncpy (text, "", kVstMaxParamStrLen); break;
+ case kParamB: vst_strncpy (text, "", kVstMaxParamStrLen); break;
+ case kParamC: vst_strncpy (text, "", kVstMaxParamStrLen); break;
+ case kParamD: vst_strncpy (text, "", kVstMaxParamStrLen); break;
+ case kParamE: vst_strncpy (text, "", kVstMaxParamStrLen); break;
+ default: break; // unknown parameter, shouldn't happen!
+ }
+}
+
+VstInt32 Biquad2::canDo(char *text)
+{ return (_canDo.find(text) == _canDo.end()) ? -1: 1; } // 1 = yes, -1 = no, 0 = don't know
+
+bool Biquad2::getEffectName(char* name) {
+ vst_strncpy(name, "Biquad2", kVstMaxProductStrLen); return true;
+}
+
+VstPlugCategory Biquad2::getPlugCategory() {return kPlugCategEffect;}
+
+bool Biquad2::getProductString(char* text) {
+ vst_strncpy (text, "airwindows Biquad2", kVstMaxProductStrLen); return true;
+}
+
+bool Biquad2::getVendorString(char* text) {
+ vst_strncpy (text, "airwindows", kVstMaxVendorStrLen); return true;
+}
diff --git a/plugins/LinuxVST/src/Biquad2/Biquad2.h b/plugins/LinuxVST/src/Biquad2/Biquad2.h
new file mode 100755
index 0000000..20c1d1c
--- /dev/null
+++ b/plugins/LinuxVST/src/Biquad2/Biquad2.h
@@ -0,0 +1,86 @@
+/* ========================================
+ * Biquad2 - Biquad2.h
+ * Created 8/12/11 by SPIAdmin
+ * Copyright (c) 2011 __MyCompanyName__, All rights reserved
+ * ======================================== */
+
+#ifndef __Biquad2_H
+#define __Biquad2_H
+
+#ifndef __audioeffect__
+#include "audioeffectx.h"
+#endif
+
+#include <set>
+#include <string>
+#include <math.h>
+
+enum {
+ kParamA = 0,
+ kParamB = 1,
+ kParamC = 2,
+ kParamD = 3,
+ kParamE = 4,
+ kNumParameters = 5
+}; //
+
+const int kNumPrograms = 0;
+const int kNumInputs = 2;
+const int kNumOutputs = 2;
+const unsigned long kUniqueId = 'biqe'; //Change this to what the AU identity is!
+
+class Biquad2 :
+ public AudioEffectX
+{
+public:
+ Biquad2(audioMasterCallback audioMaster);
+ ~Biquad2();
+ virtual bool getEffectName(char* name); // The plug-in name
+ virtual VstPlugCategory getPlugCategory(); // The general category for the plug-in
+ virtual bool getProductString(char* text); // This is a unique plug-in string provided by Steinberg
+ virtual bool getVendorString(char* text); // Vendor info
+ virtual VstInt32 getVendorVersion(); // Version number
+ virtual void processReplacing (float** inputs, float** outputs, VstInt32 sampleFrames);
+ virtual void processDoubleReplacing (double** inputs, double** outputs, VstInt32 sampleFrames);
+ virtual void getProgramName(char *name); // read the name from the host
+ virtual void setProgramName(char *name); // changes the name of the preset displayed in the host
+ virtual VstInt32 getChunk (void** data, bool isPreset);
+ virtual VstInt32 setChunk (void* data, VstInt32 byteSize, bool isPreset);
+ virtual float getParameter(VstInt32 index); // get the parameter value at the specified index
+ virtual void setParameter(VstInt32 index, float value); // set the parameter at index to value
+ virtual void getParameterLabel(VstInt32 index, char *text); // label for the parameter (eg dB)
+ virtual void getParameterName(VstInt32 index, char *text); // name of the parameter
+ virtual void getParameterDisplay(VstInt32 index, char *text); // text description of the current value
+ virtual VstInt32 canDo(char *text);
+private:
+ char _programName[kVstMaxProgNameLen + 1];
+ std::set< std::string > _canDo;
+
+ long double biquad[15]; //note that this stereo form doesn't require L and R forms!
+ //This is because so much of it is coefficients etc. that are the same on both channels.
+ //So the stored samples are in 7-8-9-10 and 11-12-13-14, and freq/res/coefficients serve both.
+
+ double bL[11];
+ double bR[11];
+ double f[11];
+ double frequencychase;
+ double resonancechase;
+ double outputchase;
+ double wetchase;
+ double frequencysetting;
+ double resonancesetting;
+ double outputsetting;
+ double wetsetting;
+ double chasespeed;
+
+ uint32_t fpd;
+ //default stuff
+
+ float A;
+ float B;
+ float C;
+ float D;
+ float E;
+};
+
+#endif
diff --git a/plugins/LinuxVST/src/Biquad2/Biquad2Proc.cpp b/plugins/LinuxVST/src/Biquad2/Biquad2Proc.cpp
new file mode 100755
index 0000000..837a072
--- /dev/null
+++ b/plugins/LinuxVST/src/Biquad2/Biquad2Proc.cpp
@@ -0,0 +1,432 @@
+/* ========================================
+ * Biquad2 - Biquad2.h
+ * Copyright (c) 2016 airwindows, All rights reserved
+ * ======================================== */
+
+#ifndef __Biquad2_H
+#include "Biquad2.h"
+#endif
+
+void Biquad2::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames)
+{
+ float* in1 = inputs[0];
+ float* in2 = inputs[1];
+ float* out1 = outputs[0];
+ float* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+
+ int type = ceil((A*3.999)+0.00001);
+
+ double average = B*B;
+ double frequencytarget = average*0.39; //biquad[0], goes to 1.0
+ frequencytarget /= overallscale;
+ if (frequencytarget < 0.0015/overallscale) frequencytarget = 0.0015/overallscale;
+ double resonancetarget = (C*C*49.99)+0.01; //biquad[1], goes to 50.0
+ if (resonancetarget < 1.0) resonancetarget = 1.0;
+ double outputtarget = D; //scaled to res
+ if (type < 3) outputtarget /= sqrt(resonancetarget);
+ double wettarget = (E*2.0)-1.0; //wet, goes -1.0 to 1.0
+
+ //biquad contains these values:
+ //[0] is frequency: 0.000001 to 0.499999 is near-zero to near-Nyquist
+ //[1] is resonance, 0.7071 is Butterworth. Also can't be zero
+ //[2] is a0 but you need distinct ones for additional biquad instances so it's here
+ //[3] is a1 but you need distinct ones for additional biquad instances so it's here
+ //[4] is a2 but you need distinct ones for additional biquad instances so it's here
+ //[5] is b1 but you need distinct ones for additional biquad instances so it's here
+ //[6] is b2 but you need distinct ones for additional biquad instances so it's here
+ //[7] is a stored delayed sample (freq and res are stored so you can move them sample by sample)
+ //[8] is a stored delayed sample (you have to include the coefficient making code if you do that)
+ //[9] is a stored delayed sample (you have to include the coefficient making code if you do that)
+ //[10] is a stored delayed sample (you have to include the coefficient making code if you do that)
+ double K = tan(M_PI * biquad[0]);
+ double norm = 1.0 / (1.0 + K / biquad[1] + K * K);
+ //finished setting up biquad
+
+ average = (1.0-average)*10.0; //max taps is 10, and low settings use more
+
+ if (type == 1 || type == 3) average = 1.0;
+
+ double gain = average;
+ if (gain > 1.0) {f[0] = 1.0; gain -= 1.0;} else {f[0] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[1] = 1.0; gain -= 1.0;} else {f[1] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[2] = 1.0; gain -= 1.0;} else {f[2] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[3] = 1.0; gain -= 1.0;} else {f[3] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[4] = 1.0; gain -= 1.0;} else {f[4] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[5] = 1.0; gain -= 1.0;} else {f[5] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[6] = 1.0; gain -= 1.0;} else {f[6] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[7] = 1.0; gain -= 1.0;} else {f[7] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[8] = 1.0; gain -= 1.0;} else {f[8] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[9] = 1.0; gain -= 1.0;} else {f[9] = gain; gain = 0.0;}
+ //there, now we have a neat little moving average with remainders
+
+ if (average < 1.0) average = 1.0;
+ f[0] /= average;
+ f[1] /= average;
+ f[2] /= average;
+ f[3] /= average;
+ f[4] /= average;
+ f[5] /= average;
+ f[6] /= average;
+ f[7] /= average;
+ f[8] /= average;
+ f[9] /= average;
+ //and now it's neatly scaled, too
+ //finished setting up average
+
+ while (--sampleFrames >= 0)
+ {
+ long double inputSampleL = *in1;
+ long double inputSampleR = *in2;
+ if (fabs(inputSampleL)<1.18e-37) inputSampleL = fpd * 1.18e-37;
+ if (fabs(inputSampleR)<1.18e-37) inputSampleR = fpd * 1.18e-37;
+ long double drySampleL = inputSampleL;
+ long double drySampleR = inputSampleR;
+
+ double chasespeed = 50000;
+ if (frequencychase < frequencytarget) chasespeed = 500000;
+ chasespeed /= resonancechase;
+ chasespeed *= overallscale;
+
+ frequencychase = (((frequencychase*chasespeed)+frequencytarget)/(chasespeed+1.0));
+
+ double fasterchase = 1000 * overallscale;
+ resonancechase = (((resonancechase*fasterchase)+resonancetarget)/(fasterchase+1.0));
+ outputchase = (((outputchase*fasterchase)+outputtarget)/(fasterchase+1.0));
+ wetchase = (((wetchase*fasterchase)+wettarget)/(fasterchase+1.0));
+ if (biquad[0] != frequencychase) {biquad[0] = frequencychase; K = tan(M_PI * biquad[0]);}
+ if (biquad[1] != resonancechase) {biquad[1] = resonancechase; norm = 1.0 / (1.0 + K / biquad[1] + K * K);}
+
+ if (type == 1) { //lowpass
+ biquad[2] = K * K * norm;
+ biquad[3] = 2.0 * biquad[2];
+ biquad[4] = biquad[2];
+ biquad[5] = 2.0 * (K * K - 1.0) * norm;
+ }
+
+ if (type == 2) { //highpass
+ biquad[2] = norm;
+ biquad[3] = -2.0 * biquad[2];
+ biquad[4] = biquad[2];
+ biquad[5] = 2.0 * (K * K - 1.0) * norm;
+ }
+
+ if (type == 3) { //bandpass
+ biquad[2] = K / biquad[1] * norm;
+ biquad[3] = 0.0; //bandpass can simplify the biquad kernel: leave out this multiply
+ biquad[4] = -biquad[2];
+ biquad[5] = 2.0 * (K * K - 1.0) * norm;
+ }
+
+ if (type == 4) { //notch
+ biquad[2] = (1.0 + K * K) * norm;
+ biquad[3] = 2.0 * (K * K - 1) * norm;
+ biquad[4] = biquad[2];
+ biquad[5] = biquad[3];
+ }
+
+ biquad[6] = (1.0 - K / biquad[1] + K * K) * norm;
+
+ inputSampleL = sin(inputSampleL);
+ inputSampleR = sin(inputSampleR);
+ //encode Console5: good cleanness
+
+ long double outSampleL = biquad[2]*inputSampleL+biquad[3]*biquad[7]+biquad[4]*biquad[8]-biquad[5]*biquad[9]-biquad[6]*biquad[10];
+ biquad[8] = biquad[7]; biquad[7] = inputSampleL; inputSampleL = outSampleL; biquad[10] = biquad[9]; biquad[9] = inputSampleL; //DF1 left
+
+ long double outSampleR = biquad[2]*inputSampleR+biquad[3]*biquad[11]+biquad[4]*biquad[12]-biquad[5]*biquad[13]-biquad[6]*biquad[14];
+ biquad[12] = biquad[11]; biquad[11] = inputSampleR; inputSampleR = outSampleR; biquad[14] = biquad[13]; biquad[13] = inputSampleR; //DF1 right
+
+ if (inputSampleL > 1.0) inputSampleL = 1.0;
+ if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0;
+ if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ bL[9] = bL[8]; bL[8] = bL[7]; bL[7] = bL[6]; bL[6] = bL[5];
+ bL[5] = bL[4]; bL[4] = bL[3]; bL[3] = bL[2]; bL[2] = bL[1];
+ bL[1] = bL[0]; bL[0] = inputSampleL;
+
+ bR[9] = bR[8]; bR[8] = bR[7]; bR[7] = bR[6]; bR[6] = bR[5];
+ bR[5] = bR[4]; bR[4] = bR[3]; bR[3] = bR[2]; bR[2] = bR[1];
+ bR[1] = bR[0]; bR[0] = inputSampleR;
+
+ inputSampleL *= f[0];
+ inputSampleL += (bL[1] * f[1]);
+ inputSampleL += (bL[2] * f[2]);
+ inputSampleL += (bL[3] * f[3]);
+ inputSampleL += (bL[4] * f[4]);
+ inputSampleL += (bL[5] * f[5]);
+ inputSampleL += (bL[6] * f[6]);
+ inputSampleL += (bL[7] * f[7]);
+ inputSampleL += (bL[8] * f[8]);
+ inputSampleL += (bL[9] * f[9]); //intense averaging on deeper cutoffs
+
+ inputSampleR *= f[0];
+ inputSampleR += (bR[1] * f[1]);
+ inputSampleR += (bR[2] * f[2]);
+ inputSampleR += (bR[3] * f[3]);
+ inputSampleR += (bR[4] * f[4]);
+ inputSampleR += (bR[5] * f[5]);
+ inputSampleR += (bR[6] * f[6]);
+ inputSampleR += (bR[7] * f[7]);
+ inputSampleR += (bR[8] * f[8]);
+ inputSampleR += (bR[9] * f[9]); //intense averaging on deeper cutoffs
+
+ if (inputSampleL > 1.0) inputSampleL = 1.0;
+ if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0;
+ if (inputSampleR < -1.0) inputSampleR = -1.0;
+ //without this, you can get a NaN condition where it spits out DC offset at full blast!
+ inputSampleL = asin(inputSampleL);
+ inputSampleR = asin(inputSampleR);
+ //amplitude aspect
+ if (inputSampleL > 1.0) inputSampleL = 1.0;
+ if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0;
+ if (inputSampleR < -1.0) inputSampleR = -1.0;
+ //and then Console5 will spit out overs if you let it
+
+ if (outputchase < 1.0) {
+ inputSampleL *= outputchase;
+ inputSampleR *= outputchase;
+ }
+
+ if (wetchase < 1.0) {
+ inputSampleL = (inputSampleL*wetchase) + (drySampleL*(1.0-fabs(wetchase)));
+ inputSampleR = (inputSampleR*wetchase) + (drySampleR*(1.0-fabs(wetchase)));
+ //inv/dry/wet lets us turn LP into HP and band into notch
+ }
+
+ //begin 32 bit stereo floating point dither
+ int expon; frexpf((float)inputSampleL, &expon);
+ fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
+ inputSampleL += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62));
+ frexpf((float)inputSampleR, &expon);
+ fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
+ inputSampleR += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62));
+ //end 32 bit stereo floating point dither
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+}
+
+void Biquad2::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames)
+{
+ double* in1 = inputs[0];
+ double* in2 = inputs[1];
+ double* out1 = outputs[0];
+ double* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+
+ int type = ceil((A*3.999)+0.00001);
+
+ double average = B*B;
+ double frequencytarget = average*0.39; //biquad[0], goes to 1.0
+ frequencytarget /= overallscale;
+ if (frequencytarget < 0.0015/overallscale) frequencytarget = 0.0015/overallscale;
+ double resonancetarget = (C*C*49.99)+0.01; //biquad[1], goes to 50.0
+ if (resonancetarget < 1.0) resonancetarget = 1.0;
+ double outputtarget = D; //scaled to res
+ if (type < 3) outputtarget /= sqrt(resonancetarget);
+ double wettarget = (E*2.0)-1.0; //wet, goes -1.0 to 1.0
+
+ //biquad contains these values:
+ //[0] is frequency: 0.000001 to 0.499999 is near-zero to near-Nyquist
+ //[1] is resonance, 0.7071 is Butterworth. Also can't be zero
+ //[2] is a0 but you need distinct ones for additional biquad instances so it's here
+ //[3] is a1 but you need distinct ones for additional biquad instances so it's here
+ //[4] is a2 but you need distinct ones for additional biquad instances so it's here
+ //[5] is b1 but you need distinct ones for additional biquad instances so it's here
+ //[6] is b2 but you need distinct ones for additional biquad instances so it's here
+ //[7] is a stored delayed sample (freq and res are stored so you can move them sample by sample)
+ //[8] is a stored delayed sample (you have to include the coefficient making code if you do that)
+ //[9] is a stored delayed sample (you have to include the coefficient making code if you do that)
+ //[10] is a stored delayed sample (you have to include the coefficient making code if you do that)
+ double K = tan(M_PI * biquad[0]);
+ double norm = 1.0 / (1.0 + K / biquad[1] + K * K);
+ //finished setting up biquad
+
+ average = (1.0-average)*10.0; //max taps is 10, and low settings use more
+
+ if (type == 1 || type == 3) average = 1.0;
+
+ double gain = average;
+ if (gain > 1.0) {f[0] = 1.0; gain -= 1.0;} else {f[0] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[1] = 1.0; gain -= 1.0;} else {f[1] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[2] = 1.0; gain -= 1.0;} else {f[2] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[3] = 1.0; gain -= 1.0;} else {f[3] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[4] = 1.0; gain -= 1.0;} else {f[4] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[5] = 1.0; gain -= 1.0;} else {f[5] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[6] = 1.0; gain -= 1.0;} else {f[6] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[7] = 1.0; gain -= 1.0;} else {f[7] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[8] = 1.0; gain -= 1.0;} else {f[8] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[9] = 1.0; gain -= 1.0;} else {f[9] = gain; gain = 0.0;}
+ //there, now we have a neat little moving average with remainders
+
+ if (average < 1.0) average = 1.0;
+ f[0] /= average;
+ f[1] /= average;
+ f[2] /= average;
+ f[3] /= average;
+ f[4] /= average;
+ f[5] /= average;
+ f[6] /= average;
+ f[7] /= average;
+ f[8] /= average;
+ f[9] /= average;
+ //and now it's neatly scaled, too
+ //finished setting up average
+
+ while (--sampleFrames >= 0)
+ {
+ long double inputSampleL = *in1;
+ long double inputSampleR = *in2;
+ if (fabs(inputSampleL)<1.18e-43) inputSampleL = fpd * 1.18e-43;
+ if (fabs(inputSampleR)<1.18e-43) inputSampleR = fpd * 1.18e-43;
+ long double drySampleL = inputSampleL;
+ long double drySampleR = inputSampleR;
+
+ double chasespeed = 50000;
+ if (frequencychase < frequencytarget) chasespeed = 500000;
+ chasespeed /= resonancechase;
+ chasespeed *= overallscale;
+
+ frequencychase = (((frequencychase*chasespeed)+frequencytarget)/(chasespeed+1.0));
+
+ double fasterchase = 1000 * overallscale;
+ resonancechase = (((resonancechase*fasterchase)+resonancetarget)/(fasterchase+1.0));
+ outputchase = (((outputchase*fasterchase)+outputtarget)/(fasterchase+1.0));
+ wetchase = (((wetchase*fasterchase)+wettarget)/(fasterchase+1.0));
+ if (biquad[0] != frequencychase) {biquad[0] = frequencychase; K = tan(M_PI * biquad[0]);}
+ if (biquad[1] != resonancechase) {biquad[1] = resonancechase; norm = 1.0 / (1.0 + K / biquad[1] + K * K);}
+
+ if (type == 1) { //lowpass
+ biquad[2] = K * K * norm;
+ biquad[3] = 2.0 * biquad[2];
+ biquad[4] = biquad[2];
+ biquad[5] = 2.0 * (K * K - 1.0) * norm;
+ }
+
+ if (type == 2) { //highpass
+ biquad[2] = norm;
+ biquad[3] = -2.0 * biquad[2];
+ biquad[4] = biquad[2];
+ biquad[5] = 2.0 * (K * K - 1.0) * norm;
+ }
+
+ if (type == 3) { //bandpass
+ biquad[2] = K / biquad[1] * norm;
+ biquad[3] = 0.0; //bandpass can simplify the biquad kernel: leave out this multiply
+ biquad[4] = -biquad[2];
+ biquad[5] = 2.0 * (K * K - 1.0) * norm;
+ }
+
+ if (type == 4) { //notch
+ biquad[2] = (1.0 + K * K) * norm;
+ biquad[3] = 2.0 * (K * K - 1) * norm;
+ biquad[4] = biquad[2];
+ biquad[5] = biquad[3];
+ }
+
+ biquad[6] = (1.0 - K / biquad[1] + K * K) * norm;
+
+ inputSampleL = sin(inputSampleL);
+ inputSampleR = sin(inputSampleR);
+ //encode Console5: good cleanness
+
+ long double outSampleL = biquad[2]*inputSampleL+biquad[3]*biquad[7]+biquad[4]*biquad[8]-biquad[5]*biquad[9]-biquad[6]*biquad[10];
+ biquad[8] = biquad[7]; biquad[7] = inputSampleL; inputSampleL = outSampleL; biquad[10] = biquad[9]; biquad[9] = inputSampleL; //DF1 left
+
+ long double outSampleR = biquad[2]*inputSampleR+biquad[3]*biquad[11]+biquad[4]*biquad[12]-biquad[5]*biquad[13]-biquad[6]*biquad[14];
+ biquad[12] = biquad[11]; biquad[11] = inputSampleR; inputSampleR = outSampleR; biquad[14] = biquad[13]; biquad[13] = inputSampleR; //DF1 right
+
+ if (inputSampleL > 1.0) inputSampleL = 1.0;
+ if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0;
+ if (inputSampleR < -1.0) inputSampleR = -1.0;
+
+ bL[9] = bL[8]; bL[8] = bL[7]; bL[7] = bL[6]; bL[6] = bL[5];
+ bL[5] = bL[4]; bL[4] = bL[3]; bL[3] = bL[2]; bL[2] = bL[1];
+ bL[1] = bL[0]; bL[0] = inputSampleL;
+
+ bR[9] = bR[8]; bR[8] = bR[7]; bR[7] = bR[6]; bR[6] = bR[5];
+ bR[5] = bR[4]; bR[4] = bR[3]; bR[3] = bR[2]; bR[2] = bR[1];
+ bR[1] = bR[0]; bR[0] = inputSampleR;
+
+ inputSampleL *= f[0];
+ inputSampleL += (bL[1] * f[1]);
+ inputSampleL += (bL[2] * f[2]);
+ inputSampleL += (bL[3] * f[3]);
+ inputSampleL += (bL[4] * f[4]);
+ inputSampleL += (bL[5] * f[5]);
+ inputSampleL += (bL[6] * f[6]);
+ inputSampleL += (bL[7] * f[7]);
+ inputSampleL += (bL[8] * f[8]);
+ inputSampleL += (bL[9] * f[9]); //intense averaging on deeper cutoffs
+
+ inputSampleR *= f[0];
+ inputSampleR += (bR[1] * f[1]);
+ inputSampleR += (bR[2] * f[2]);
+ inputSampleR += (bR[3] * f[3]);
+ inputSampleR += (bR[4] * f[4]);
+ inputSampleR += (bR[5] * f[5]);
+ inputSampleR += (bR[6] * f[6]);
+ inputSampleR += (bR[7] * f[7]);
+ inputSampleR += (bR[8] * f[8]);
+ inputSampleR += (bR[9] * f[9]); //intense averaging on deeper cutoffs
+
+ if (inputSampleL > 1.0) inputSampleL = 1.0;
+ if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0;
+ if (inputSampleR < -1.0) inputSampleR = -1.0;
+ //without this, you can get a NaN condition where it spits out DC offset at full blast!
+ inputSampleL = asin(inputSampleL);
+ inputSampleR = asin(inputSampleR);
+ //amplitude aspect
+ if (inputSampleL > 1.0) inputSampleL = 1.0;
+ if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0;
+ if (inputSampleR < -1.0) inputSampleR = -1.0;
+ //and then Console5 will spit out overs if you let it
+
+ if (outputchase < 1.0) {
+ inputSampleL *= outputchase;
+ inputSampleR *= outputchase;
+ }
+
+ if (wetchase < 1.0) {
+ inputSampleL = (inputSampleL*wetchase) + (drySampleL*(1.0-fabs(wetchase)));
+ inputSampleR = (inputSampleR*wetchase) + (drySampleR*(1.0-fabs(wetchase)));
+ //inv/dry/wet lets us turn LP into HP and band into notch
+ }
+
+ //begin 64 bit stereo floating point dither
+ int expon; frexp((double)inputSampleL, &expon);
+ fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
+ inputSampleL += ((double(fpd)-uint32_t(0x7fffffff)) * 1.1e-44l * pow(2,expon+62));
+ frexp((double)inputSampleR, &expon);
+ fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
+ inputSampleR += ((double(fpd)-uint32_t(0x7fffffff)) * 1.1e-44l * pow(2,expon+62));
+ //end 64 bit stereo floating point dither
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+}