From 8209ad4ceba452b470c1d6c347612701c4901dec Mon Sep 17 00:00:00 2001 From: Chris Johnson Date: Sun, 22 Sep 2019 22:52:35 -0400 Subject: Biquad2 --- plugins/LinuxVST/CMakeLists.txt | 1 + plugins/LinuxVST/src/Biquad2/Biquad2.cpp | 163 ++++++++++ plugins/LinuxVST/src/Biquad2/Biquad2.h | 86 ++++++ plugins/LinuxVST/src/Biquad2/Biquad2Proc.cpp | 432 +++++++++++++++++++++++++++ 4 files changed, 682 insertions(+) create mode 100755 plugins/LinuxVST/src/Biquad2/Biquad2.cpp create mode 100755 plugins/LinuxVST/src/Biquad2/Biquad2.h create mode 100755 plugins/LinuxVST/src/Biquad2/Biquad2Proc.cpp (limited to 'plugins/LinuxVST') diff --git a/plugins/LinuxVST/CMakeLists.txt b/plugins/LinuxVST/CMakeLists.txt index e4f65e0..9ec2b85 100755 --- a/plugins/LinuxVST/CMakeLists.txt +++ b/plugins/LinuxVST/CMakeLists.txt @@ -19,6 +19,7 @@ add_airwindows_plugin(Average) add_airwindows_plugin(BassDrive) add_airwindows_plugin(BassKit) add_airwindows_plugin(Biquad) +add_airwindows_plugin(Biquad2) add_airwindows_plugin(Bite) add_airwindows_plugin(BitGlitter) add_airwindows_plugin(BitShiftGain) diff --git a/plugins/LinuxVST/src/Biquad2/Biquad2.cpp b/plugins/LinuxVST/src/Biquad2/Biquad2.cpp new file mode 100755 index 0000000..83e1664 --- /dev/null +++ b/plugins/LinuxVST/src/Biquad2/Biquad2.cpp @@ -0,0 +1,163 @@ +/* ======================================== + * Biquad2 - Biquad2.h + * Copyright (c) 2016 airwindows, All rights reserved + * ======================================== */ + +#ifndef __Biquad2_H +#include "Biquad2.h" +#endif + +AudioEffect* createEffectInstance(audioMasterCallback audioMaster) {return new Biquad2(audioMaster);} + +Biquad2::Biquad2(audioMasterCallback audioMaster) : + AudioEffectX(audioMaster, kNumPrograms, kNumParameters) +{ + for (int x = 0; x < 15; x++) {biquad[x] = 0.0;} + for (int x = 0; x < 11; x++) {bL[x] = 0.0; bR[x] = 0.0; f[x] = 0.0;} + frequencychase = 0.0015; + resonancechase = 0.001; + outputchase = 1.0; + wetchase = 1.0; + + frequencysetting = -1.0; + resonancesetting = -1.0; + outputsetting = -1.0; + wetsetting = -2.0; //-1.0 is a possible setting here and this forces an update on chasespeed + + chasespeed = 500.0; + A = 1.0; + B = 0.5; + C = 0.5; + D = 1.0; + E = 1.0; + fpd = 17; + //this is reset: values being initialized only once. Startup values, whatever they are. + + _canDo.insert("plugAsChannelInsert"); // plug-in can be used as a channel insert effect. + _canDo.insert("plugAsSend"); // plug-in can be used as a send effect. + _canDo.insert("x2in2out"); + setNumInputs(kNumInputs); + setNumOutputs(kNumOutputs); + setUniqueID(kUniqueId); + canProcessReplacing(); // supports output replacing + canDoubleReplacing(); // supports double precision processing + programsAreChunks(true); + vst_strncpy (_programName, "Default", kVstMaxProgNameLen); // default program name +} + +Biquad2::~Biquad2() {} +VstInt32 Biquad2::getVendorVersion () {return 1000;} +void Biquad2::setProgramName(char *name) {vst_strncpy (_programName, name, kVstMaxProgNameLen);} +void Biquad2::getProgramName(char *name) {vst_strncpy (name, _programName, kVstMaxProgNameLen);} +//airwindows likes to ignore this stuff. Make your own programs, and make a different plugin rather than +//trying to do versioning and preventing people from using older versions. Maybe they like the old one! + +static float pinParameter(float data) +{ + if (data < 0.0f) return 0.0f; + if (data > 1.0f) return 1.0f; + return data; +} + +VstInt32 Biquad2::getChunk (void** data, bool isPreset) +{ + float *chunkData = (float *)calloc(kNumParameters, sizeof(float)); + chunkData[0] = A; + chunkData[1] = B; + chunkData[2] = C; + chunkData[3] = D; + chunkData[4] = E; + /* Note: The way this is set up, it will break if you manage to save settings on an Intel + machine and load them on a PPC Mac. However, it's fine if you stick to the machine you + started with. */ + + *data = chunkData; + return kNumParameters * sizeof(float); +} + +VstInt32 Biquad2::setChunk (void* data, VstInt32 byteSize, bool isPreset) +{ + float *chunkData = (float *)data; + A = pinParameter(chunkData[0]); + B = pinParameter(chunkData[1]); + C = pinParameter(chunkData[2]); + D = pinParameter(chunkData[3]); + E = pinParameter(chunkData[4]); + /* We're ignoring byteSize as we found it to be a filthy liar */ + + /* calculate any other fields you need here - you could copy in + code from setParameter() here. */ + return 0; +} + +void Biquad2::setParameter(VstInt32 index, float value) { + switch (index) { + case kParamA: A = value; break; + case kParamB: B = value; break; + case kParamC: C = value; break; + case kParamD: D = value; break; + case kParamE: E = value; break; + default: throw; // unknown parameter, shouldn't happen! + } +} + +float Biquad2::getParameter(VstInt32 index) { + switch (index) { + case kParamA: return A; break; + case kParamB: return B; break; + case kParamC: return C; break; + case kParamD: return D; break; + case kParamE: return E; break; + default: break; // unknown parameter, shouldn't happen! + } return 0.0; //we only need to update the relevant name, this is simple to manage +} + +void Biquad2::getParameterName(VstInt32 index, char *text) { + switch (index) { + case kParamA: vst_strncpy (text, "Type", kVstMaxParamStrLen); break; + case kParamB: vst_strncpy (text, "Freq", kVstMaxParamStrLen); break; + case kParamC: vst_strncpy (text, "Q", kVstMaxParamStrLen); break; + case kParamD: vst_strncpy (text, "Output", kVstMaxParamStrLen); break; + case kParamE: vst_strncpy (text, "Inv/Wet", kVstMaxParamStrLen); break; + default: break; // unknown parameter, shouldn't happen! + } //this is our labels for displaying in the VST host +} + +void Biquad2::getParameterDisplay(VstInt32 index, char *text) { + switch (index) { + case kParamA: float2string ((float)ceil((A*3.999)+0.00001), text, kVstMaxParamStrLen); break; + case kParamB: float2string ((B*B*0.9999)+0.0001, text, kVstMaxParamStrLen); break; + case kParamC: float2string ((C*C*49.99)+0.01, text, kVstMaxParamStrLen); break; + case kParamD: float2string (D, text, kVstMaxParamStrLen); break; + case kParamE: float2string ((E*2.0)-1.0, text, kVstMaxParamStrLen); break; + default: break; // unknown parameter, shouldn't happen! + } //this displays the values and handles 'popups' where it's discrete choices +} + +void Biquad2::getParameterLabel(VstInt32 index, char *text) { + switch (index) { + case kParamA: vst_strncpy (text, "", kVstMaxParamStrLen); break; + case kParamB: vst_strncpy (text, "", kVstMaxParamStrLen); break; + case kParamC: vst_strncpy (text, "", kVstMaxParamStrLen); break; + case kParamD: vst_strncpy (text, "", kVstMaxParamStrLen); break; + case kParamE: vst_strncpy (text, "", kVstMaxParamStrLen); break; + default: break; // unknown parameter, shouldn't happen! + } +} + +VstInt32 Biquad2::canDo(char *text) +{ return (_canDo.find(text) == _canDo.end()) ? -1: 1; } // 1 = yes, -1 = no, 0 = don't know + +bool Biquad2::getEffectName(char* name) { + vst_strncpy(name, "Biquad2", kVstMaxProductStrLen); return true; +} + +VstPlugCategory Biquad2::getPlugCategory() {return kPlugCategEffect;} + +bool Biquad2::getProductString(char* text) { + vst_strncpy (text, "airwindows Biquad2", kVstMaxProductStrLen); return true; +} + +bool Biquad2::getVendorString(char* text) { + vst_strncpy (text, "airwindows", kVstMaxVendorStrLen); return true; +} diff --git a/plugins/LinuxVST/src/Biquad2/Biquad2.h b/plugins/LinuxVST/src/Biquad2/Biquad2.h new file mode 100755 index 0000000..20c1d1c --- /dev/null +++ b/plugins/LinuxVST/src/Biquad2/Biquad2.h @@ -0,0 +1,86 @@ +/* ======================================== + * Biquad2 - Biquad2.h + * Created 8/12/11 by SPIAdmin + * Copyright (c) 2011 __MyCompanyName__, All rights reserved + * ======================================== */ + +#ifndef __Biquad2_H +#define __Biquad2_H + +#ifndef __audioeffect__ +#include "audioeffectx.h" +#endif + +#include +#include +#include + +enum { + kParamA = 0, + kParamB = 1, + kParamC = 2, + kParamD = 3, + kParamE = 4, + kNumParameters = 5 +}; // + +const int kNumPrograms = 0; +const int kNumInputs = 2; +const int kNumOutputs = 2; +const unsigned long kUniqueId = 'biqe'; //Change this to what the AU identity is! + +class Biquad2 : + public AudioEffectX +{ +public: + Biquad2(audioMasterCallback audioMaster); + ~Biquad2(); + virtual bool getEffectName(char* name); // The plug-in name + virtual VstPlugCategory getPlugCategory(); // The general category for the plug-in + virtual bool getProductString(char* text); // This is a unique plug-in string provided by Steinberg + virtual bool getVendorString(char* text); // Vendor info + virtual VstInt32 getVendorVersion(); // Version number + virtual void processReplacing (float** inputs, float** outputs, VstInt32 sampleFrames); + virtual void processDoubleReplacing (double** inputs, double** outputs, VstInt32 sampleFrames); + virtual void getProgramName(char *name); // read the name from the host + virtual void setProgramName(char *name); // changes the name of the preset displayed in the host + virtual VstInt32 getChunk (void** data, bool isPreset); + virtual VstInt32 setChunk (void* data, VstInt32 byteSize, bool isPreset); + virtual float getParameter(VstInt32 index); // get the parameter value at the specified index + virtual void setParameter(VstInt32 index, float value); // set the parameter at index to value + virtual void getParameterLabel(VstInt32 index, char *text); // label for the parameter (eg dB) + virtual void getParameterName(VstInt32 index, char *text); // name of the parameter + virtual void getParameterDisplay(VstInt32 index, char *text); // text description of the current value + virtual VstInt32 canDo(char *text); +private: + char _programName[kVstMaxProgNameLen + 1]; + std::set< std::string > _canDo; + + long double biquad[15]; //note that this stereo form doesn't require L and R forms! + //This is because so much of it is coefficients etc. that are the same on both channels. + //So the stored samples are in 7-8-9-10 and 11-12-13-14, and freq/res/coefficients serve both. + + double bL[11]; + double bR[11]; + double f[11]; + double frequencychase; + double resonancechase; + double outputchase; + double wetchase; + double frequencysetting; + double resonancesetting; + double outputsetting; + double wetsetting; + double chasespeed; + + uint32_t fpd; + //default stuff + + float A; + float B; + float C; + float D; + float E; +}; + +#endif diff --git a/plugins/LinuxVST/src/Biquad2/Biquad2Proc.cpp b/plugins/LinuxVST/src/Biquad2/Biquad2Proc.cpp new file mode 100755 index 0000000..837a072 --- /dev/null +++ b/plugins/LinuxVST/src/Biquad2/Biquad2Proc.cpp @@ -0,0 +1,432 @@ +/* ======================================== + * Biquad2 - Biquad2.h + * Copyright (c) 2016 airwindows, All rights reserved + * ======================================== */ + +#ifndef __Biquad2_H +#include "Biquad2.h" +#endif + +void Biquad2::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) +{ + float* in1 = inputs[0]; + float* in2 = inputs[1]; + float* out1 = outputs[0]; + float* out2 = outputs[1]; + + double overallscale = 1.0; + overallscale /= 44100.0; + overallscale *= getSampleRate(); + + int type = ceil((A*3.999)+0.00001); + + double average = B*B; + double frequencytarget = average*0.39; //biquad[0], goes to 1.0 + frequencytarget /= overallscale; + if (frequencytarget < 0.0015/overallscale) frequencytarget = 0.0015/overallscale; + double resonancetarget = (C*C*49.99)+0.01; //biquad[1], goes to 50.0 + if (resonancetarget < 1.0) resonancetarget = 1.0; + double outputtarget = D; //scaled to res + if (type < 3) outputtarget /= sqrt(resonancetarget); + double wettarget = (E*2.0)-1.0; //wet, goes -1.0 to 1.0 + + //biquad contains these values: + //[0] is frequency: 0.000001 to 0.499999 is near-zero to near-Nyquist + //[1] is resonance, 0.7071 is Butterworth. Also can't be zero + //[2] is a0 but you need distinct ones for additional biquad instances so it's here + //[3] is a1 but you need distinct ones for additional biquad instances so it's here + //[4] is a2 but you need distinct ones for additional biquad instances so it's here + //[5] is b1 but you need distinct ones for additional biquad instances so it's here + //[6] is b2 but you need distinct ones for additional biquad instances so it's here + //[7] is a stored delayed sample (freq and res are stored so you can move them sample by sample) + //[8] is a stored delayed sample (you have to include the coefficient making code if you do that) + //[9] is a stored delayed sample (you have to include the coefficient making code if you do that) + //[10] is a stored delayed sample (you have to include the coefficient making code if you do that) + double K = tan(M_PI * biquad[0]); + double norm = 1.0 / (1.0 + K / biquad[1] + K * K); + //finished setting up biquad + + average = (1.0-average)*10.0; //max taps is 10, and low settings use more + + if (type == 1 || type == 3) average = 1.0; + + double gain = average; + if (gain > 1.0) {f[0] = 1.0; gain -= 1.0;} else {f[0] = gain; gain = 0.0;} + if (gain > 1.0) {f[1] = 1.0; gain -= 1.0;} else {f[1] = gain; gain = 0.0;} + if (gain > 1.0) {f[2] = 1.0; gain -= 1.0;} else {f[2] = gain; gain = 0.0;} + if (gain > 1.0) {f[3] = 1.0; gain -= 1.0;} else {f[3] = gain; gain = 0.0;} + if (gain > 1.0) {f[4] = 1.0; gain -= 1.0;} else {f[4] = gain; gain = 0.0;} + if (gain > 1.0) {f[5] = 1.0; gain -= 1.0;} else {f[5] = gain; gain = 0.0;} + if (gain > 1.0) {f[6] = 1.0; gain -= 1.0;} else {f[6] = gain; gain = 0.0;} + if (gain > 1.0) {f[7] = 1.0; gain -= 1.0;} else {f[7] = gain; gain = 0.0;} + if (gain > 1.0) {f[8] = 1.0; gain -= 1.0;} else {f[8] = gain; gain = 0.0;} + if (gain > 1.0) {f[9] = 1.0; gain -= 1.0;} else {f[9] = gain; gain = 0.0;} + //there, now we have a neat little moving average with remainders + + if (average < 1.0) average = 1.0; + f[0] /= average; + f[1] /= average; + f[2] /= average; + f[3] /= average; + f[4] /= average; + f[5] /= average; + f[6] /= average; + f[7] /= average; + f[8] /= average; + f[9] /= average; + //and now it's neatly scaled, too + //finished setting up average + + while (--sampleFrames >= 0) + { + long double inputSampleL = *in1; + long double inputSampleR = *in2; + if (fabs(inputSampleL)<1.18e-37) inputSampleL = fpd * 1.18e-37; + if (fabs(inputSampleR)<1.18e-37) inputSampleR = fpd * 1.18e-37; + long double drySampleL = inputSampleL; + long double drySampleR = inputSampleR; + + double chasespeed = 50000; + if (frequencychase < frequencytarget) chasespeed = 500000; + chasespeed /= resonancechase; + chasespeed *= overallscale; + + frequencychase = (((frequencychase*chasespeed)+frequencytarget)/(chasespeed+1.0)); + + double fasterchase = 1000 * overallscale; + resonancechase = (((resonancechase*fasterchase)+resonancetarget)/(fasterchase+1.0)); + outputchase = (((outputchase*fasterchase)+outputtarget)/(fasterchase+1.0)); + wetchase = (((wetchase*fasterchase)+wettarget)/(fasterchase+1.0)); + if (biquad[0] != frequencychase) {biquad[0] = frequencychase; K = tan(M_PI * biquad[0]);} + if (biquad[1] != resonancechase) {biquad[1] = resonancechase; norm = 1.0 / (1.0 + K / biquad[1] + K * K);} + + if (type == 1) { //lowpass + biquad[2] = K * K * norm; + biquad[3] = 2.0 * biquad[2]; + biquad[4] = biquad[2]; + biquad[5] = 2.0 * (K * K - 1.0) * norm; + } + + if (type == 2) { //highpass + biquad[2] = norm; + biquad[3] = -2.0 * biquad[2]; + biquad[4] = biquad[2]; + biquad[5] = 2.0 * (K * K - 1.0) * norm; + } + + if (type == 3) { //bandpass + biquad[2] = K / biquad[1] * norm; + biquad[3] = 0.0; //bandpass can simplify the biquad kernel: leave out this multiply + biquad[4] = -biquad[2]; + biquad[5] = 2.0 * (K * K - 1.0) * norm; + } + + if (type == 4) { //notch + biquad[2] = (1.0 + K * K) * norm; + biquad[3] = 2.0 * (K * K - 1) * norm; + biquad[4] = biquad[2]; + biquad[5] = biquad[3]; + } + + biquad[6] = (1.0 - K / biquad[1] + K * K) * norm; + + inputSampleL = sin(inputSampleL); + inputSampleR = sin(inputSampleR); + //encode Console5: good cleanness + + long double outSampleL = biquad[2]*inputSampleL+biquad[3]*biquad[7]+biquad[4]*biquad[8]-biquad[5]*biquad[9]-biquad[6]*biquad[10]; + biquad[8] = biquad[7]; biquad[7] = inputSampleL; inputSampleL = outSampleL; biquad[10] = biquad[9]; biquad[9] = inputSampleL; //DF1 left + + long double outSampleR = biquad[2]*inputSampleR+biquad[3]*biquad[11]+biquad[4]*biquad[12]-biquad[5]*biquad[13]-biquad[6]*biquad[14]; + biquad[12] = biquad[11]; biquad[11] = inputSampleR; inputSampleR = outSampleR; biquad[14] = biquad[13]; biquad[13] = inputSampleR; //DF1 right + + if (inputSampleL > 1.0) inputSampleL = 1.0; + if (inputSampleL < -1.0) inputSampleL = -1.0; + if (inputSampleR > 1.0) inputSampleR = 1.0; + if (inputSampleR < -1.0) inputSampleR = -1.0; + + bL[9] = bL[8]; bL[8] = bL[7]; bL[7] = bL[6]; bL[6] = bL[5]; + bL[5] = bL[4]; bL[4] = bL[3]; bL[3] = bL[2]; bL[2] = bL[1]; + bL[1] = bL[0]; bL[0] = inputSampleL; + + bR[9] = bR[8]; bR[8] = bR[7]; bR[7] = bR[6]; bR[6] = bR[5]; + bR[5] = bR[4]; bR[4] = bR[3]; bR[3] = bR[2]; bR[2] = bR[1]; + bR[1] = bR[0]; bR[0] = inputSampleR; + + inputSampleL *= f[0]; + inputSampleL += (bL[1] * f[1]); + inputSampleL += (bL[2] * f[2]); + inputSampleL += (bL[3] * f[3]); + inputSampleL += (bL[4] * f[4]); + inputSampleL += (bL[5] * f[5]); + inputSampleL += (bL[6] * f[6]); + inputSampleL += (bL[7] * f[7]); + inputSampleL += (bL[8] * f[8]); + inputSampleL += (bL[9] * f[9]); //intense averaging on deeper cutoffs + + inputSampleR *= f[0]; + inputSampleR += (bR[1] * f[1]); + inputSampleR += (bR[2] * f[2]); + inputSampleR += (bR[3] * f[3]); + inputSampleR += (bR[4] * f[4]); + inputSampleR += (bR[5] * f[5]); + inputSampleR += (bR[6] * f[6]); + inputSampleR += (bR[7] * f[7]); + inputSampleR += (bR[8] * f[8]); + inputSampleR += (bR[9] * f[9]); //intense averaging on deeper cutoffs + + if (inputSampleL > 1.0) inputSampleL = 1.0; + if (inputSampleL < -1.0) inputSampleL = -1.0; + if (inputSampleR > 1.0) inputSampleR = 1.0; + if (inputSampleR < -1.0) inputSampleR = -1.0; + //without this, you can get a NaN condition where it spits out DC offset at full blast! + inputSampleL = asin(inputSampleL); + inputSampleR = asin(inputSampleR); + //amplitude aspect + if (inputSampleL > 1.0) inputSampleL = 1.0; + if (inputSampleL < -1.0) inputSampleL = -1.0; + if (inputSampleR > 1.0) inputSampleR = 1.0; + if (inputSampleR < -1.0) inputSampleR = -1.0; + //and then Console5 will spit out overs if you let it + + if (outputchase < 1.0) { + inputSampleL *= outputchase; + inputSampleR *= outputchase; + } + + if (wetchase < 1.0) { + inputSampleL = (inputSampleL*wetchase) + (drySampleL*(1.0-fabs(wetchase))); + inputSampleR = (inputSampleR*wetchase) + (drySampleR*(1.0-fabs(wetchase))); + //inv/dry/wet lets us turn LP into HP and band into notch + } + + //begin 32 bit stereo floating point dither + int expon; frexpf((float)inputSampleL, &expon); + fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; + inputSampleL += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62)); + frexpf((float)inputSampleR, &expon); + fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; + inputSampleR += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62)); + //end 32 bit stereo floating point dither + + *out1 = inputSampleL; + *out2 = inputSampleR; + + *in1++; + *in2++; + *out1++; + *out2++; + } +} + +void Biquad2::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) +{ + double* in1 = inputs[0]; + double* in2 = inputs[1]; + double* out1 = outputs[0]; + double* out2 = outputs[1]; + + double overallscale = 1.0; + overallscale /= 44100.0; + overallscale *= getSampleRate(); + + int type = ceil((A*3.999)+0.00001); + + double average = B*B; + double frequencytarget = average*0.39; //biquad[0], goes to 1.0 + frequencytarget /= overallscale; + if (frequencytarget < 0.0015/overallscale) frequencytarget = 0.0015/overallscale; + double resonancetarget = (C*C*49.99)+0.01; //biquad[1], goes to 50.0 + if (resonancetarget < 1.0) resonancetarget = 1.0; + double outputtarget = D; //scaled to res + if (type < 3) outputtarget /= sqrt(resonancetarget); + double wettarget = (E*2.0)-1.0; //wet, goes -1.0 to 1.0 + + //biquad contains these values: + //[0] is frequency: 0.000001 to 0.499999 is near-zero to near-Nyquist + //[1] is resonance, 0.7071 is Butterworth. Also can't be zero + //[2] is a0 but you need distinct ones for additional biquad instances so it's here + //[3] is a1 but you need distinct ones for additional biquad instances so it's here + //[4] is a2 but you need distinct ones for additional biquad instances so it's here + //[5] is b1 but you need distinct ones for additional biquad instances so it's here + //[6] is b2 but you need distinct ones for additional biquad instances so it's here + //[7] is a stored delayed sample (freq and res are stored so you can move them sample by sample) + //[8] is a stored delayed sample (you have to include the coefficient making code if you do that) + //[9] is a stored delayed sample (you have to include the coefficient making code if you do that) + //[10] is a stored delayed sample (you have to include the coefficient making code if you do that) + double K = tan(M_PI * biquad[0]); + double norm = 1.0 / (1.0 + K / biquad[1] + K * K); + //finished setting up biquad + + average = (1.0-average)*10.0; //max taps is 10, and low settings use more + + if (type == 1 || type == 3) average = 1.0; + + double gain = average; + if (gain > 1.0) {f[0] = 1.0; gain -= 1.0;} else {f[0] = gain; gain = 0.0;} + if (gain > 1.0) {f[1] = 1.0; gain -= 1.0;} else {f[1] = gain; gain = 0.0;} + if (gain > 1.0) {f[2] = 1.0; gain -= 1.0;} else {f[2] = gain; gain = 0.0;} + if (gain > 1.0) {f[3] = 1.0; gain -= 1.0;} else {f[3] = gain; gain = 0.0;} + if (gain > 1.0) {f[4] = 1.0; gain -= 1.0;} else {f[4] = gain; gain = 0.0;} + if (gain > 1.0) {f[5] = 1.0; gain -= 1.0;} else {f[5] = gain; gain = 0.0;} + if (gain > 1.0) {f[6] = 1.0; gain -= 1.0;} else {f[6] = gain; gain = 0.0;} + if (gain > 1.0) {f[7] = 1.0; gain -= 1.0;} else {f[7] = gain; gain = 0.0;} + if (gain > 1.0) {f[8] = 1.0; gain -= 1.0;} else {f[8] = gain; gain = 0.0;} + if (gain > 1.0) {f[9] = 1.0; gain -= 1.0;} else {f[9] = gain; gain = 0.0;} + //there, now we have a neat little moving average with remainders + + if (average < 1.0) average = 1.0; + f[0] /= average; + f[1] /= average; + f[2] /= average; + f[3] /= average; + f[4] /= average; + f[5] /= average; + f[6] /= average; + f[7] /= average; + f[8] /= average; + f[9] /= average; + //and now it's neatly scaled, too + //finished setting up average + + while (--sampleFrames >= 0) + { + long double inputSampleL = *in1; + long double inputSampleR = *in2; + if (fabs(inputSampleL)<1.18e-43) inputSampleL = fpd * 1.18e-43; + if (fabs(inputSampleR)<1.18e-43) inputSampleR = fpd * 1.18e-43; + long double drySampleL = inputSampleL; + long double drySampleR = inputSampleR; + + double chasespeed = 50000; + if (frequencychase < frequencytarget) chasespeed = 500000; + chasespeed /= resonancechase; + chasespeed *= overallscale; + + frequencychase = (((frequencychase*chasespeed)+frequencytarget)/(chasespeed+1.0)); + + double fasterchase = 1000 * overallscale; + resonancechase = (((resonancechase*fasterchase)+resonancetarget)/(fasterchase+1.0)); + outputchase = (((outputchase*fasterchase)+outputtarget)/(fasterchase+1.0)); + wetchase = (((wetchase*fasterchase)+wettarget)/(fasterchase+1.0)); + if (biquad[0] != frequencychase) {biquad[0] = frequencychase; K = tan(M_PI * biquad[0]);} + if (biquad[1] != resonancechase) {biquad[1] = resonancechase; norm = 1.0 / (1.0 + K / biquad[1] + K * K);} + + if (type == 1) { //lowpass + biquad[2] = K * K * norm; + biquad[3] = 2.0 * biquad[2]; + biquad[4] = biquad[2]; + biquad[5] = 2.0 * (K * K - 1.0) * norm; + } + + if (type == 2) { //highpass + biquad[2] = norm; + biquad[3] = -2.0 * biquad[2]; + biquad[4] = biquad[2]; + biquad[5] = 2.0 * (K * K - 1.0) * norm; + } + + if (type == 3) { //bandpass + biquad[2] = K / biquad[1] * norm; + biquad[3] = 0.0; //bandpass can simplify the biquad kernel: leave out this multiply + biquad[4] = -biquad[2]; + biquad[5] = 2.0 * (K * K - 1.0) * norm; + } + + if (type == 4) { //notch + biquad[2] = (1.0 + K * K) * norm; + biquad[3] = 2.0 * (K * K - 1) * norm; + biquad[4] = biquad[2]; + biquad[5] = biquad[3]; + } + + biquad[6] = (1.0 - K / biquad[1] + K * K) * norm; + + inputSampleL = sin(inputSampleL); + inputSampleR = sin(inputSampleR); + //encode Console5: good cleanness + + long double outSampleL = biquad[2]*inputSampleL+biquad[3]*biquad[7]+biquad[4]*biquad[8]-biquad[5]*biquad[9]-biquad[6]*biquad[10]; + biquad[8] = biquad[7]; biquad[7] = inputSampleL; inputSampleL = outSampleL; biquad[10] = biquad[9]; biquad[9] = inputSampleL; //DF1 left + + long double outSampleR = biquad[2]*inputSampleR+biquad[3]*biquad[11]+biquad[4]*biquad[12]-biquad[5]*biquad[13]-biquad[6]*biquad[14]; + biquad[12] = biquad[11]; biquad[11] = inputSampleR; inputSampleR = outSampleR; biquad[14] = biquad[13]; biquad[13] = inputSampleR; //DF1 right + + if (inputSampleL > 1.0) inputSampleL = 1.0; + if (inputSampleL < -1.0) inputSampleL = -1.0; + if (inputSampleR > 1.0) inputSampleR = 1.0; + if (inputSampleR < -1.0) inputSampleR = -1.0; + + bL[9] = bL[8]; bL[8] = bL[7]; bL[7] = bL[6]; bL[6] = bL[5]; + bL[5] = bL[4]; bL[4] = bL[3]; bL[3] = bL[2]; bL[2] = bL[1]; + bL[1] = bL[0]; bL[0] = inputSampleL; + + bR[9] = bR[8]; bR[8] = bR[7]; bR[7] = bR[6]; bR[6] = bR[5]; + bR[5] = bR[4]; bR[4] = bR[3]; bR[3] = bR[2]; bR[2] = bR[1]; + bR[1] = bR[0]; bR[0] = inputSampleR; + + inputSampleL *= f[0]; + inputSampleL += (bL[1] * f[1]); + inputSampleL += (bL[2] * f[2]); + inputSampleL += (bL[3] * f[3]); + inputSampleL += (bL[4] * f[4]); + inputSampleL += (bL[5] * f[5]); + inputSampleL += (bL[6] * f[6]); + inputSampleL += (bL[7] * f[7]); + inputSampleL += (bL[8] * f[8]); + inputSampleL += (bL[9] * f[9]); //intense averaging on deeper cutoffs + + inputSampleR *= f[0]; + inputSampleR += (bR[1] * f[1]); + inputSampleR += (bR[2] * f[2]); + inputSampleR += (bR[3] * f[3]); + inputSampleR += (bR[4] * f[4]); + inputSampleR += (bR[5] * f[5]); + inputSampleR += (bR[6] * f[6]); + inputSampleR += (bR[7] * f[7]); + inputSampleR += (bR[8] * f[8]); + inputSampleR += (bR[9] * f[9]); //intense averaging on deeper cutoffs + + if (inputSampleL > 1.0) inputSampleL = 1.0; + if (inputSampleL < -1.0) inputSampleL = -1.0; + if (inputSampleR > 1.0) inputSampleR = 1.0; + if (inputSampleR < -1.0) inputSampleR = -1.0; + //without this, you can get a NaN condition where it spits out DC offset at full blast! + inputSampleL = asin(inputSampleL); + inputSampleR = asin(inputSampleR); + //amplitude aspect + if (inputSampleL > 1.0) inputSampleL = 1.0; + if (inputSampleL < -1.0) inputSampleL = -1.0; + if (inputSampleR > 1.0) inputSampleR = 1.0; + if (inputSampleR < -1.0) inputSampleR = -1.0; + //and then Console5 will spit out overs if you let it + + if (outputchase < 1.0) { + inputSampleL *= outputchase; + inputSampleR *= outputchase; + } + + if (wetchase < 1.0) { + inputSampleL = (inputSampleL*wetchase) + (drySampleL*(1.0-fabs(wetchase))); + inputSampleR = (inputSampleR*wetchase) + (drySampleR*(1.0-fabs(wetchase))); + //inv/dry/wet lets us turn LP into HP and band into notch + } + + //begin 64 bit stereo floating point dither + int expon; frexp((double)inputSampleL, &expon); + fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; + inputSampleL += ((double(fpd)-uint32_t(0x7fffffff)) * 1.1e-44l * pow(2,expon+62)); + frexp((double)inputSampleR, &expon); + fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5; + inputSampleR += ((double(fpd)-uint32_t(0x7fffffff)) * 1.1e-44l * pow(2,expon+62)); + //end 64 bit stereo floating point dither + + *out1 = inputSampleL; + *out2 = inputSampleR; + + *in1++; + *in2++; + *out1++; + *out2++; + } +} -- cgit v1.2.3