aboutsummaryrefslogblamecommitdiffstats
path: root/plugins/WinVST/Wider/WiderProc.cpp
blob: f90fa210c49dd3a1558bbda7c08ff85196442346 (plain) (tree)


















                                                                                     
























































































































                                                                                                                            







                                                                                               




















                                                                                             
























































































































                                                                                                                            









                                                                                               









                                     
/* ========================================
 *  Wider - Wider.h
 *  Copyright (c) 2016 airwindows, All rights reserved
 * ======================================== */

#ifndef __Wider_H
#include "Wider.h"
#endif

void Wider::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) 
{
    float* in1  =  inputs[0];
    float* in2  =  inputs[1];
    float* out1 = outputs[0];
    float* out2 = outputs[1];

	double overallscale = 1.0;
	overallscale /= 44100.0;
	overallscale *= getSampleRate();

	long double inputSampleL;
	long double inputSampleR;
	double drySampleL;
	double drySampleR;
	long double mid;
	long double side;
	double out;
	double densityside = (A*2.0)-1.0;
	double densitymid = (B*2.0)-1.0;
	double wet = C;
	double dry = 1.0 - wet;
	wet *= 0.5; //we make mid-side by adding/subtracting both channels into each channel
	//and that's why we gotta divide it by 2: otherwise everything's doubled. So, premultiply it to save an extra 'math'
	double offset = (densityside-densitymid)/2;
	if (offset > 0) offset = sin(offset);
	if (offset < 0) offset = -sin(-offset);
	offset = -(pow(offset,4) * 20 * overallscale);
	int near = (int)floor(fabs(offset));
	double farLevel = fabs(offset) - near;
	int far = near + 1;
	double nearLevel = 1.0 - farLevel;
	double bridgerectifier;
	//interpolating the sample
    
    while (--sampleFrames >= 0)
    {
		inputSampleL = *in1;
		inputSampleR = *in2;
		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
			static int noisesource = 0;
			//this declares a variable before anything else is compiled. It won't keep assigning
			//it to 0 for every sample, it's as if the declaration doesn't exist in this context,
			//but it lets me add this denormalization fix in a single place rather than updating
			//it in three different locations. The variable isn't thread-safe but this is only
			//a random seed and we can share it with whatever.
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleL = applyresidue;
		}
		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
			static int noisesource = 0;
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleR = applyresidue;
			//this denormalization routine produces a white noise at -300 dB which the noise
			//shaping will interact with to produce a bipolar output, but the noise is actually
			//all positive. That should stop any variables from going denormal, and the routine
			//only kicks in if digital black is input. As a final touch, if you save to 24-bit
			//the silence will return to being digital black again.
		}
		drySampleL = inputSampleL;
		drySampleR = inputSampleR;
		//assign working variables		
		mid = inputSampleL + inputSampleR;
		side = inputSampleL - inputSampleR;
		//assign mid and side. Now, High Impact code
		
		if (densityside != 0.0)
		{
			out = fabs(densityside);
			bridgerectifier = fabs(side)*1.57079633;
			if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
			//max value for sine function
			if (densityside > 0) bridgerectifier = sin(bridgerectifier);
			else bridgerectifier = 1-cos(bridgerectifier);
			//produce either boosted or starved version
			if (side > 0) side = (side*(1-out))+(bridgerectifier*out);
			else side = (side*(1-out))-(bridgerectifier*out);
			//blend according to density control
		}
		
		if (densitymid != 0.0)
		{
			out = fabs(densitymid);
			bridgerectifier = fabs(mid)*1.57079633;
			if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
			//max value for sine function
			if (densitymid > 0) bridgerectifier = sin(bridgerectifier);
			else bridgerectifier = 1-cos(bridgerectifier);
			//produce either boosted or starved version
			if (mid > 0) mid = (mid*(1-out))+(bridgerectifier*out);
			else mid = (mid*(1-out))-(bridgerectifier*out);
			//blend according to density control
		}
		
		if (count < 1 || count > 2048) {count = 2048;}
		if (offset > 0)
		{
			p[count+2048] = p[count] = mid;
			mid = p[count+near]*nearLevel;
			mid += p[count+far]*farLevel;
		}
		
		if (offset < 0)
		{
			p[count+2048] = p[count] = side;
			side = p[count+near]*nearLevel;
			side += p[count+far]*farLevel;
		}
		count -= 1;
		
		inputSampleL = (drySampleL * dry) + ((mid+side) * wet);
		inputSampleR = (drySampleR * dry) + ((mid-side) * wet);
		
		//stereo 32 bit dither, made small and tidy.
		int expon; frexpf((float)inputSampleL, &expon);
		long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		inputSampleL += (dither-fpNShapeL); fpNShapeL = dither;
		frexpf((float)inputSampleR, &expon);
		dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		inputSampleR += (dither-fpNShapeR); fpNShapeR = dither;
		//end 32 bit dither

		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}

void Wider::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) 
{
    double* in1  =  inputs[0];
    double* in2  =  inputs[1];
    double* out1 = outputs[0];
    double* out2 = outputs[1];

	double overallscale = 1.0;
	overallscale /= 44100.0;
	overallscale *= getSampleRate();
	
	long double inputSampleL;
	long double inputSampleR;
	double drySampleL;
	double drySampleR;
	long double mid;
	long double side;
	double out;
	double densityside = (A*2.0)-1.0;
	double densitymid = (B*2.0)-1.0;
	double wet = C;
	double dry = 1.0 - wet;
	wet *= 0.5; //we make mid-side by adding/subtracting both channels into each channel
	//and that's why we gotta divide it by 2: otherwise everything's doubled. So, premultiply it to save an extra 'math'
	double offset = (densityside-densitymid)/2;
	if (offset > 0) offset = sin(offset);
	if (offset < 0) offset = -sin(-offset);
	offset = -(pow(offset,4) * 20 * overallscale);
	int near = (int)floor(fabs(offset));
	double farLevel = fabs(offset) - near;
	int far = near + 1;
	double nearLevel = 1.0 - farLevel;
	double bridgerectifier;
	//interpolating the sample
    
    while (--sampleFrames >= 0)
    {
		inputSampleL = *in1;
		inputSampleR = *in2;
		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
			static int noisesource = 0;
			//this declares a variable before anything else is compiled. It won't keep assigning
			//it to 0 for every sample, it's as if the declaration doesn't exist in this context,
			//but it lets me add this denormalization fix in a single place rather than updating
			//it in three different locations. The variable isn't thread-safe but this is only
			//a random seed and we can share it with whatever.
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleL = applyresidue;
		}
		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
			static int noisesource = 0;
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleR = applyresidue;
			//this denormalization routine produces a white noise at -300 dB which the noise
			//shaping will interact with to produce a bipolar output, but the noise is actually
			//all positive. That should stop any variables from going denormal, and the routine
			//only kicks in if digital black is input. As a final touch, if you save to 24-bit
			//the silence will return to being digital black again.
		}
		drySampleL = inputSampleL;
		drySampleR = inputSampleR;
		//assign working variables		
		mid = inputSampleL + inputSampleR;
		side = inputSampleL - inputSampleR;
		//assign mid and side. Now, High Impact code
		
		if (densityside != 0.0)
		{
			out = fabs(densityside);
			bridgerectifier = fabs(side)*1.57079633;
			if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
			//max value for sine function
			if (densityside > 0) bridgerectifier = sin(bridgerectifier);
			else bridgerectifier = 1-cos(bridgerectifier);
			//produce either boosted or starved version
			if (side > 0) side = (side*(1-out))+(bridgerectifier*out);
			else side = (side*(1-out))-(bridgerectifier*out);
			//blend according to density control
		}
		
		if (densitymid != 0.0)
		{
			out = fabs(densitymid);
			bridgerectifier = fabs(mid)*1.57079633;
			if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
			//max value for sine function
			if (densitymid > 0) bridgerectifier = sin(bridgerectifier);
			else bridgerectifier = 1-cos(bridgerectifier);
			//produce either boosted or starved version
			if (mid > 0) mid = (mid*(1-out))+(bridgerectifier*out);
			else mid = (mid*(1-out))-(bridgerectifier*out);
			//blend according to density control
		}
		
		if (count < 1 || count > 2048) {count = 2048;}
		if (offset > 0)
		{
			p[count+2048] = p[count] = mid;
			mid = p[count+near]*nearLevel;
			mid += p[count+far]*farLevel;
		}
		
		if (offset < 0)
		{
			p[count+2048] = p[count] = side;
			side = p[count+near]*nearLevel;
			side += p[count+far]*farLevel;
		}
		count -= 1;
		
		inputSampleL = (drySampleL * dry) + ((mid+side) * wet);
		inputSampleR = (drySampleR * dry) + ((mid-side) * wet);
		
		//stereo 64 bit dither, made small and tidy.
		int expon; frexp((double)inputSampleL, &expon);
		long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		dither /= 536870912.0; //needs this to scale to 64 bit zone
		inputSampleL += (dither-fpNShapeL); fpNShapeL = dither;
		frexp((double)inputSampleR, &expon);
		dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		dither /= 536870912.0; //needs this to scale to 64 bit zone
		inputSampleR += (dither-fpNShapeR); fpNShapeR = dither;
		//end 64 bit dither
		
		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}