/* ======================================== * Wider - Wider.h * Copyright (c) 2016 airwindows, All rights reserved * ======================================== */ #ifndef __Wider_H #include "Wider.h" #endif void Wider::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) { float* in1 = inputs[0]; float* in2 = inputs[1]; float* out1 = outputs[0]; float* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); long double inputSampleL; long double inputSampleR; double drySampleL; double drySampleR; long double mid; long double side; double out; double densityside = (A*2.0)-1.0; double densitymid = (B*2.0)-1.0; double wet = C; double dry = 1.0 - wet; wet *= 0.5; //we make mid-side by adding/subtracting both channels into each channel //and that's why we gotta divide it by 2: otherwise everything's doubled. So, premultiply it to save an extra 'math' double offset = (densityside-densitymid)/2; if (offset > 0) offset = sin(offset); if (offset < 0) offset = -sin(-offset); offset = -(pow(offset,4) * 20 * overallscale); int near = (int)floor(fabs(offset)); double farLevel = fabs(offset) - near; int far = near + 1; double nearLevel = 1.0 - farLevel; double bridgerectifier; //interpolating the sample while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; //assign working variables mid = inputSampleL + inputSampleR; side = inputSampleL - inputSampleR; //assign mid and side. Now, High Impact code if (densityside != 0.0) { out = fabs(densityside); bridgerectifier = fabs(side)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function if (densityside > 0) bridgerectifier = sin(bridgerectifier); else bridgerectifier = 1-cos(bridgerectifier); //produce either boosted or starved version if (side > 0) side = (side*(1-out))+(bridgerectifier*out); else side = (side*(1-out))-(bridgerectifier*out); //blend according to density control } if (densitymid != 0.0) { out = fabs(densitymid); bridgerectifier = fabs(mid)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function if (densitymid > 0) bridgerectifier = sin(bridgerectifier); else bridgerectifier = 1-cos(bridgerectifier); //produce either boosted or starved version if (mid > 0) mid = (mid*(1-out))+(bridgerectifier*out); else mid = (mid*(1-out))-(bridgerectifier*out); //blend according to density control } if (count < 1 || count > 2048) {count = 2048;} if (offset > 0) { p[count+2048] = p[count] = mid; mid = p[count+near]*nearLevel; mid += p[count+far]*farLevel; } if (offset < 0) { p[count+2048] = p[count] = side; side = p[count+near]*nearLevel; side += p[count+far]*farLevel; } count -= 1; inputSampleL = (drySampleL * dry) + ((mid+side) * wet); inputSampleR = (drySampleR * dry) + ((mid-side) * wet); //stereo 32 bit dither, made small and tidy. int expon; frexpf((float)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexpf((float)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 32 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } } void Wider::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) { double* in1 = inputs[0]; double* in2 = inputs[1]; double* out1 = outputs[0]; double* out2 = outputs[1]; double overallscale = 1.0; overallscale /= 44100.0; overallscale *= getSampleRate(); long double inputSampleL; long double inputSampleR; double drySampleL; double drySampleR; long double mid; long double side; double out; double densityside = (A*2.0)-1.0; double densitymid = (B*2.0)-1.0; double wet = C; double dry = 1.0 - wet; wet *= 0.5; //we make mid-side by adding/subtracting both channels into each channel //and that's why we gotta divide it by 2: otherwise everything's doubled. So, premultiply it to save an extra 'math' double offset = (densityside-densitymid)/2; if (offset > 0) offset = sin(offset); if (offset < 0) offset = -sin(-offset); offset = -(pow(offset,4) * 20 * overallscale); int near = (int)floor(fabs(offset)); double farLevel = fabs(offset) - near; int far = near + 1; double nearLevel = 1.0 - farLevel; double bridgerectifier; //interpolating the sample while (--sampleFrames >= 0) { inputSampleL = *in1; inputSampleR = *in2; if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) { static int noisesource = 0; //this declares a variable before anything else is compiled. It won't keep assigning //it to 0 for every sample, it's as if the declaration doesn't exist in this context, //but it lets me add this denormalization fix in a single place rather than updating //it in three different locations. The variable isn't thread-safe but this is only //a random seed and we can share it with whatever. noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleL = applyresidue; } if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) { static int noisesource = 0; noisesource = noisesource % 1700021; noisesource++; int residue = noisesource * noisesource; residue = residue % 170003; residue *= residue; residue = residue % 17011; residue *= residue; residue = residue % 1709; residue *= residue; residue = residue % 173; residue *= residue; residue = residue % 17; double applyresidue = residue; applyresidue *= 0.00000001; applyresidue *= 0.00000001; inputSampleR = applyresidue; //this denormalization routine produces a white noise at -300 dB which the noise //shaping will interact with to produce a bipolar output, but the noise is actually //all positive. That should stop any variables from going denormal, and the routine //only kicks in if digital black is input. As a final touch, if you save to 24-bit //the silence will return to being digital black again. } drySampleL = inputSampleL; drySampleR = inputSampleR; //assign working variables mid = inputSampleL + inputSampleR; side = inputSampleL - inputSampleR; //assign mid and side. Now, High Impact code if (densityside != 0.0) { out = fabs(densityside); bridgerectifier = fabs(side)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function if (densityside > 0) bridgerectifier = sin(bridgerectifier); else bridgerectifier = 1-cos(bridgerectifier); //produce either boosted or starved version if (side > 0) side = (side*(1-out))+(bridgerectifier*out); else side = (side*(1-out))-(bridgerectifier*out); //blend according to density control } if (densitymid != 0.0) { out = fabs(densitymid); bridgerectifier = fabs(mid)*1.57079633; if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633; //max value for sine function if (densitymid > 0) bridgerectifier = sin(bridgerectifier); else bridgerectifier = 1-cos(bridgerectifier); //produce either boosted or starved version if (mid > 0) mid = (mid*(1-out))+(bridgerectifier*out); else mid = (mid*(1-out))-(bridgerectifier*out); //blend according to density control } if (count < 1 || count > 2048) {count = 2048;} if (offset > 0) { p[count+2048] = p[count] = mid; mid = p[count+near]*nearLevel; mid += p[count+far]*farLevel; } if (offset < 0) { p[count+2048] = p[count] = side; side = p[count+near]*nearLevel; side += p[count+far]*farLevel; } count -= 1; inputSampleL = (drySampleL * dry) + ((mid+side) * wet); inputSampleR = (drySampleR * dry) + ((mid-side) * wet); //stereo 64 bit dither, made small and tidy. int expon; frexp((double)inputSampleL, &expon); long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleL += (dither-fpNShapeL); fpNShapeL = dither; frexp((double)inputSampleR, &expon); dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62); dither /= 536870912.0; //needs this to scale to 64 bit zone inputSampleR += (dither-fpNShapeR); fpNShapeR = dither; //end 64 bit dither *out1 = inputSampleL; *out2 = inputSampleR; *in1++; *in2++; *out1++; *out2++; } }