aboutsummaryrefslogblamecommitdiffstats
path: root/plugins/WinVST/Golem/GolemProc.cpp
blob: 1d7e9f5f96428d0a31272bf09c2e6d25f4d7d1f8 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16















                                                                                     

































































































                                                                                                                        







                                                                                               

















                                                                                             

































































































                                                                                                                        









                                                                                               









                                     
/* ========================================
 *  Golem - Golem.h
 *  Copyright (c) 2016 airwindows, All rights reserved
 * ======================================== */

#ifndef __Golem_H
#include "Golem.h"
#endif

void Golem::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) 
{
    float* in1  =  inputs[0];
    float* in2  =  inputs[1];
    float* out1 = outputs[0];
    float* out2 = outputs[1];

	int phase = (int)((C * 5.999)+1);
	double balance = ((A*2.0)-1.0) / 2.0;
	double gainL = 0.5 - balance;
	double gainR = 0.5 + balance;
	double range = 30.0;
	if (phase == 3) range = 700.0;
	if (phase == 4) range = 700.0;
	double offset = pow((B*2.0)-1.0,5) * range;
	if (phase > 4) offset = 0.0;
	if (phase > 5)
	{
		gainL = 0.5;
		gainR = 0.5;
	}
	int near = (int)floor(fabs(offset));
	double farLevel = fabs(offset) - near;
	int far = near + 1;
	double nearLevel = 1.0 - farLevel;
	
	long double inputSampleL;
	long double inputSampleR;
	
    while (--sampleFrames >= 0)
    {
		inputSampleL = *in1;
		inputSampleR = *in2;
		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
			static int noisesource = 0;
			//this declares a variable before anything else is compiled. It won't keep assigning
			//it to 0 for every sample, it's as if the declaration doesn't exist in this context,
			//but it lets me add this denormalization fix in a single place rather than updating
			//it in three different locations. The variable isn't thread-safe but this is only
			//a random seed and we can share it with whatever.
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleL = applyresidue;
		}
		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
			static int noisesource = 0;
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleR = applyresidue;
			//this denormalization routine produces a white noise at -300 dB which the noise
			//shaping will interact with to produce a bipolar output, but the noise is actually
			//all positive. That should stop any variables from going denormal, and the routine
			//only kicks in if digital black is input. As a final touch, if you save to 24-bit
			//the silence will return to being digital black again.
		}
		//assign working variables
		
		if (phase == 2) inputSampleL = -inputSampleL;
		if (phase == 4) inputSampleL = -inputSampleL;
		
		inputSampleL *= gainL;
		inputSampleR *= gainR;
		
		if (count < 1 || count > 2048) {count = 2048;}
		
		if (offset > 0)
		{
			p[count+2048] = p[count] = inputSampleL;
			inputSampleL = p[count+near]*nearLevel;
			inputSampleL += p[count+far]*farLevel;
			
			//consider adding third sample just to bring out superhighs subtly, like old interpolation hacks
			//or third and fifth samples, ditto
			
		}
		
		if (offset < 0)
		{
			p[count+2048] = p[count] = inputSampleR;
			inputSampleR = p[count+near]*nearLevel;
			inputSampleR += p[count+far]*farLevel;
		}
		
		count -= 1;
		
		inputSampleL = inputSampleL + inputSampleR;
		inputSampleR = inputSampleL;
		//the output is totally mono
		
		//stereo 32 bit dither, made small and tidy.
		int expon; frexpf((float)inputSampleL, &expon);
		long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		inputSampleL += (dither-fpNShapeL); fpNShapeL = dither;
		frexpf((float)inputSampleR, &expon);
		dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		inputSampleR += (dither-fpNShapeR); fpNShapeR = dither;
		//end 32 bit dither

		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}

void Golem::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) 
{
    double* in1  =  inputs[0];
    double* in2  =  inputs[1];
    double* out1 = outputs[0];
    double* out2 = outputs[1];

	int phase = (int)((C * 5.999)+1);
	double balance = ((A*2.0)-1.0) / 2.0;
	double gainL = 0.5 - balance;
	double gainR = 0.5 + balance;
	double range = 30.0;
	if (phase == 3) range = 700.0;
	if (phase == 4) range = 700.0;
	double offset = pow((B*2.0)-1.0,5) * range;
	if (phase > 4) offset = 0.0;
	if (phase > 5)
	{
		gainL = 0.5;
		gainR = 0.5;
	}
	int near = (int)floor(fabs(offset));
	double farLevel = fabs(offset) - near;
	int far = near + 1;
	double nearLevel = 1.0 - farLevel;
	
	long double inputSampleL;
	long double inputSampleR;
	
    while (--sampleFrames >= 0)
    {
		inputSampleL = *in1;
		inputSampleR = *in2;
		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
			static int noisesource = 0;
			//this declares a variable before anything else is compiled. It won't keep assigning
			//it to 0 for every sample, it's as if the declaration doesn't exist in this context,
			//but it lets me add this denormalization fix in a single place rather than updating
			//it in three different locations. The variable isn't thread-safe but this is only
			//a random seed and we can share it with whatever.
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleL = applyresidue;
		}
		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
			static int noisesource = 0;
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleR = applyresidue;
			//this denormalization routine produces a white noise at -300 dB which the noise
			//shaping will interact with to produce a bipolar output, but the noise is actually
			//all positive. That should stop any variables from going denormal, and the routine
			//only kicks in if digital black is input. As a final touch, if you save to 24-bit
			//the silence will return to being digital black again.
		}
		//assign working variables
		
		if (phase == 2) inputSampleL = -inputSampleL;
		if (phase == 4) inputSampleL = -inputSampleL;
		
		inputSampleL *= gainL;
		inputSampleR *= gainR;
		
		if (count < 1 || count > 2048) {count = 2048;}
		
		if (offset > 0)
		{
			p[count+2048] = p[count] = inputSampleL;
			inputSampleL = p[count+near]*nearLevel;
			inputSampleL += p[count+far]*farLevel;
			
			//consider adding third sample just to bring out superhighs subtly, like old interpolation hacks
			//or third and fifth samples, ditto
			
		}
		
		if (offset < 0)
		{
			p[count+2048] = p[count] = inputSampleR;
			inputSampleR = p[count+near]*nearLevel;
			inputSampleR += p[count+far]*farLevel;
		}
		
		count -= 1;
		
		inputSampleL = inputSampleL + inputSampleR;
		inputSampleR = inputSampleL;
		//the output is totally mono
		
		//stereo 64 bit dither, made small and tidy.
		int expon; frexp((double)inputSampleL, &expon);
		long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		dither /= 536870912.0; //needs this to scale to 64 bit zone
		inputSampleL += (dither-fpNShapeL); fpNShapeL = dither;
		frexp((double)inputSampleR, &expon);
		dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		dither /= 536870912.0; //needs this to scale to 64 bit zone
		inputSampleR += (dither-fpNShapeR); fpNShapeR = dither;
		//end 64 bit dither
		
		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}