1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
|
**DO NOT READ THIS FILE ON GITHUB, GUIDES ARE PUBLISHED ON http://guides.rubyonrails.org.**
Active Record Query Interface
=============================
This guide covers different ways to retrieve data from the database using Active Record.
After reading this guide, you will know:
* How to find records using a variety of methods and conditions.
* How to specify the order, retrieved attributes, grouping, and other properties of the found records.
* How to use eager loading to reduce the number of database queries needed for data retrieval.
* How to use dynamic finder methods.
* How to use method chaining to use multiple Active Record methods together.
* How to check for the existence of particular records.
* How to perform various calculations on Active Record models.
* How to run EXPLAIN on relations.
--------------------------------------------------------------------------------
If you're used to using raw SQL to find database records, then you will generally find that there are better ways to carry out the same operations in Rails. Active Record insulates you from the need to use SQL in most cases.
Code examples throughout this guide will refer to one or more of the following models:
TIP: All of the following models use `id` as the primary key, unless specified otherwise.
```ruby
class Client < ApplicationRecord
has_one :address
has_many :orders
has_and_belongs_to_many :roles
end
```
```ruby
class Address < ApplicationRecord
belongs_to :client
end
```
```ruby
class Order < ApplicationRecord
belongs_to :client, counter_cache: true
end
```
```ruby
class Role < ApplicationRecord
has_and_belongs_to_many :clients
end
```
Active Record will perform queries on the database for you and is compatible with most database systems, including MySQL, MariaDB, PostgreSQL, and SQLite. Regardless of which database system you're using, the Active Record method format will always be the same.
Retrieving Objects from the Database
------------------------------------
To retrieve objects from the database, Active Record provides several finder methods. Each finder method allows you to pass arguments into it to perform certain queries on your database without writing raw SQL.
The methods are:
* `find`
* `create_with`
* `distinct`
* `eager_load`
* `extending`
* `from`
* `group`
* `having`
* `includes`
* `joins`
* `left_outer_joins`
* `limit`
* `lock`
* `none`
* `offset`
* `order`
* `preload`
* `readonly`
* `references`
* `reorder`
* `reverse_order`
* `select`
* `distinct`
* `where`
Finder methods that return a collection, such as `where` and `group`, return an instance of `ActiveRecord::Relation`. Methods that find a single entity, such as `find` and `first`, return a single instance of the model.
The primary operation of `Model.find(options)` can be summarized as:
* Convert the supplied options to an equivalent SQL query.
* Fire the SQL query and retrieve the corresponding results from the database.
* Instantiate the equivalent Ruby object of the appropriate model for every resulting row.
* Run `after_find` and then `after_initialize` callbacks, if any.
### Retrieving a Single Object
Active Record provides several different ways of retrieving a single object.
#### `find`
Using the `find` method, you can retrieve the object corresponding to the specified _primary key_ that matches any supplied options. For example:
```ruby
# Find the client with primary key (id) 10.
client = Client.find(10)
# => #<Client id: 10, first_name: "Ryan">
```
The SQL equivalent of the above is:
```sql
SELECT * FROM clients WHERE (clients.id = 10) LIMIT 1
```
The `find` method will raise an `ActiveRecord::RecordNotFound` exception if no matching record is found.
You can also use this method to query for multiple objects. Call the `find` method and pass in an array of primary keys. The return will be an array containing all of the matching records for the supplied _primary keys_. For example:
```ruby
# Find the clients with primary keys 1 and 10.
client = Client.find([1, 10]) # Or even Client.find(1, 10)
# => [#<Client id: 1, first_name: "Lifo">, #<Client id: 10, first_name: "Ryan">]
```
The SQL equivalent of the above is:
```sql
SELECT * FROM clients WHERE (clients.id IN (1,10))
```
WARNING: The `find` method will raise an `ActiveRecord::RecordNotFound` exception unless a matching record is found for **all** of the supplied primary keys.
#### `take`
The `take` method retrieves a record without any implicit ordering. For example:
```ruby
client = Client.take
# => #<Client id: 1, first_name: "Lifo">
```
The SQL equivalent of the above is:
```sql
SELECT * FROM clients LIMIT 1
```
The `take` method returns `nil` if no record is found and no exception will be raised.
You can pass in a numerical argument to the `take` method to return up to that number of results. For example
```ruby
client = Client.take(2)
# => [
# #<Client id: 1, first_name: "Lifo">,
# #<Client id: 220, first_name: "Sara">
# ]
```
The SQL equivalent of the above is:
```sql
SELECT * FROM clients LIMIT 2
```
The `take!` method behaves exactly like `take`, except that it will raise `ActiveRecord::RecordNotFound` if no matching record is found.
TIP: The retrieved record may vary depending on the database engine.
#### `first`
The `first` method finds the first record ordered by primary key (default). For example:
```ruby
client = Client.first
# => #<Client id: 1, first_name: "Lifo">
```
The SQL equivalent of the above is:
```sql
SELECT * FROM clients ORDER BY clients.id ASC LIMIT 1
```
The `first` method returns `nil` if no matching record is found and no exception will be raised.
If your [default scope](active_record_querying.html#applying-a-default-scope) contains an order method, `first` will return the first record according to this ordering.
You can pass in a numerical argument to the `first` method to return up to that number of results. For example
```ruby
client = Client.first(3)
# => [
# #<Client id: 1, first_name: "Lifo">,
# #<Client id: 2, first_name: "Fifo">,
# #<Client id: 3, first_name: "Filo">
# ]
```
The SQL equivalent of the above is:
```sql
SELECT * FROM clients ORDER BY clients.id ASC LIMIT 3
```
On a collection that is ordered using `order`, `first` will return the first record ordered by the specified attribute for `order`.
```ruby
client = Client.order(:first_name).first
# => #<Client id: 2, first_name: "Fifo">
```
The SQL equivalent of the above is:
```sql
SELECT * FROM clients ORDER BY clients.first_name ASC LIMIT 1
```
The `first!` method behaves exactly like `first`, except that it will raise `ActiveRecord::RecordNotFound` if no matching record is found.
#### `last`
The `last` method finds the last record ordered by primary key (default). For example:
```ruby
client = Client.last
# => #<Client id: 221, first_name: "Russel">
```
The SQL equivalent of the above is:
```sql
SELECT * FROM clients ORDER BY clients.id DESC LIMIT 1
```
The `last` method returns `nil` if no matching record is found and no exception will be raised.
If your [default scope](active_record_querying.html#applying-a-default-scope) contains an order method, `last` will return the last record according to this ordering.
You can pass in a numerical argument to the `last` method to return up to that number of results. For example
```ruby
client = Client.last(3)
# => [
# #<Client id: 219, first_name: "James">,
# #<Client id: 220, first_name: "Sara">,
# #<Client id: 221, first_name: "Russel">
# ]
```
The SQL equivalent of the above is:
```sql
SELECT * FROM clients ORDER BY clients.id DESC LIMIT 3
```
On a collection that is ordered using `order`, `last` will return the last record ordered by the specified attribute for `order`.
```ruby
client = Client.order(:first_name).last
# => #<Client id: 220, first_name: "Sara">
```
The SQL equivalent of the above is:
```sql
SELECT * FROM clients ORDER BY clients.first_name DESC LIMIT 1
```
The `last!` method behaves exactly like `last`, except that it will raise `ActiveRecord::RecordNotFound` if no matching record is found.
#### `find_by`
The `find_by` method finds the first record matching some conditions. For example:
```ruby
Client.find_by first_name: 'Lifo'
# => #<Client id: 1, first_name: "Lifo">
Client.find_by first_name: 'Jon'
# => nil
```
It is equivalent to writing:
```ruby
Client.where(first_name: 'Lifo').take
```
The SQL equivalent of the above is:
```sql
SELECT * FROM clients WHERE (clients.first_name = 'Lifo') LIMIT 1
```
The `find_by!` method behaves exactly like `find_by`, except that it will raise `ActiveRecord::RecordNotFound` if no matching record is found. For example:
```ruby
Client.find_by! first_name: 'does not exist'
# => ActiveRecord::RecordNotFound
```
This is equivalent to writing:
```ruby
Client.where(first_name: 'does not exist').take!
```
### Retrieving Multiple Objects in Batches
We often need to iterate over a large set of records, as when we send a newsletter to a large set of users, or when we export data.
This may appear straightforward:
```ruby
# This may consume too much memory if the table is big.
User.all.each do |user|
NewsMailer.weekly(user).deliver_now
end
```
But this approach becomes increasingly impractical as the table size increases, since `User.all.each` instructs Active Record to fetch _the entire table_ in a single pass, build a model object per row, and then keep the entire array of model objects in memory. Indeed, if we have a large number of records, the entire collection may exceed the amount of memory available.
Rails provides two methods that address this problem by dividing records into memory-friendly batches for processing. The first method, `find_each`, retrieves a batch of records and then yields _each_ record to the block individually as a model. The second method, `find_in_batches`, retrieves a batch of records and then yields _the entire batch_ to the block as an array of models.
TIP: The `find_each` and `find_in_batches` methods are intended for use in the batch processing of a large number of records that wouldn't fit in memory all at once. If you just need to loop over a thousand records the regular find methods are the preferred option.
#### `find_each`
The `find_each` method retrieves records in batches and then yields _each_ one to the block. In the following example, `find_each` retrieves users in batches of 1000 and yields them to the block one by one:
```ruby
User.find_each do |user|
NewsMailer.weekly(user).deliver_now
end
```
This process is repeated, fetching more batches as needed, until all of the records have been processed.
`find_each` works on model classes, as seen above, and also on relations:
```ruby
User.where(weekly_subscriber: true).find_each do |user|
NewsMailer.weekly(user).deliver_now
end
```
as long as they have no ordering, since the method needs to force an order
internally to iterate.
If an order is present in the receiver the behaviour depends on the flag
`config.active_record.error_on_ignored_order`. If true, `ArgumentError` is
raised, otherwise the order is ignored and a warning issued, which is the
default. This can be overridden with the option `:error_on_ignore`, explained
below.
##### Options for `find_each`
**`:batch_size`**
The `:batch_size` option allows you to specify the number of records to be retrieved in each batch, before being passed individually to the block. For example, to retrieve records in batches of 5000:
```ruby
User.find_each(batch_size: 5000) do |user|
NewsMailer.weekly(user).deliver_now
end
```
**`:start`**
By default, records are fetched in ascending order of the primary key, which must be an integer. The `:start` option allows you to configure the first ID of the sequence whenever the lowest ID is not the one you need. This would be useful, for example, if you wanted to resume an interrupted batch process, provided you saved the last processed ID as a checkpoint.
For example, to send newsletters only to users with the primary key starting from 2000:
```ruby
User.find_each(start: 2000) do |user|
NewsMailer.weekly(user).deliver_now
end
```
**`:finish`**
Similar to the `:start` option, `:finish` allows you to configure the last ID of the sequence whenever the highest ID is not the one you need.
This would be useful, for example, if you wanted to run a batch process using a subset of records based on `:start` and `:finish`.
For example, to send newsletters only to users with the primary key starting from 2000 up to 10000:
```ruby
User.find_each(start: 2000, finish: 10000) do |user|
NewsMailer.weekly(user).deliver_now
end
```
Another example would be if you wanted multiple workers handling the same
processing queue. You could have each worker handle 10000 records by setting the
appropriate `:start` and `:finish` options on each worker.
**`:error_on_ignore`**
Overrides the application config to specify if an error should be raised when an
order is present in the relation.
#### `find_in_batches`
The `find_in_batches` method is similar to `find_each`, since both retrieve batches of records. The difference is that `find_in_batches` yields _batches_ to the block as an array of models, instead of individually. The following example will yield to the supplied block an array of up to 1000 invoices at a time, with the final block containing any remaining invoices:
```ruby
# Give add_invoices an array of 1000 invoices at a time.
Invoice.find_in_batches do |invoices|
export.add_invoices(invoices)
end
```
`find_in_batches` works on model classes, as seen above, and also on relations:
```ruby
Invoice.pending.find_in_batches do |invoice|
pending_invoices_export.add_invoices(invoices)
end
```
as long as they have no ordering, since the method needs to force an order
internally to iterate.
##### Options for `find_in_batches`
The `find_in_batches` method accepts the same options as `find_each`.
Conditions
----------
The `where` method allows you to specify conditions to limit the records returned, representing the `WHERE`-part of the SQL statement. Conditions can either be specified as a string, array, or hash.
### Pure String Conditions
If you'd like to add conditions to your find, you could just specify them in there, just like `Client.where("orders_count = '2'")`. This will find all clients where the `orders_count` field's value is 2.
WARNING: Building your own conditions as pure strings can leave you vulnerable to SQL injection exploits. For example, `Client.where("first_name LIKE '%#{params[:first_name]}%'")` is not safe. See the next section for the preferred way to handle conditions using an array.
### Array Conditions
Now what if that number could vary, say as an argument from somewhere? The find would then take the form:
```ruby
Client.where("orders_count = ?", params[:orders])
```
Active Record will take the first argument as the conditions string and any additional arguments will replace the question marks `(?)` in it.
If you want to specify multiple conditions:
```ruby
Client.where("orders_count = ? AND locked = ?", params[:orders], false)
```
In this example, the first question mark will be replaced with the value in `params[:orders]` and the second will be replaced with the SQL representation of `false`, which depends on the adapter.
This code is highly preferable:
```ruby
Client.where("orders_count = ?", params[:orders])
```
to this code:
```ruby
Client.where("orders_count = #{params[:orders]}")
```
because of argument safety. Putting the variable directly into the conditions string will pass the variable to the database **as-is**. This means that it will be an unescaped variable directly from a user who may have malicious intent. If you do this, you put your entire database at risk because once a user finds out they can exploit your database they can do just about anything to it. Never ever put your arguments directly inside the conditions string.
TIP: For more information on the dangers of SQL injection, see the [Ruby on Rails Security Guide](security.html#sql-injection).
#### Placeholder Conditions
Similar to the `(?)` replacement style of params, you can also specify keys in your conditions string along with a corresponding keys/values hash:
```ruby
Client.where("created_at >= :start_date AND created_at <= :end_date",
{start_date: params[:start_date], end_date: params[:end_date]})
```
This makes for clearer readability if you have a large number of variable conditions.
### Hash Conditions
Active Record also allows you to pass in hash conditions which can increase the readability of your conditions syntax. With hash conditions, you pass in a hash with keys of the fields you want qualified and the values of how you want to qualify them:
NOTE: Only equality, range and subset checking are possible with Hash conditions.
#### Equality Conditions
```ruby
Client.where(locked: true)
```
This will generate SQL like this:
```sql
SELECT * FROM clients WHERE (clients.locked = 1)
```
The field name can also be a string:
```ruby
Client.where('locked' => true)
```
In the case of a belongs_to relationship, an association key can be used to specify the model if an Active Record object is used as the value. This method works with polymorphic relationships as well.
```ruby
Article.where(author: author)
Author.joins(:articles).where(articles: { author: author })
```
NOTE: The values cannot be symbols. For example, you cannot do `Client.where(status: :active)`.
#### Range Conditions
```ruby
Client.where(created_at: (Time.now.midnight - 1.day)..Time.now.midnight)
```
This will find all clients created yesterday by using a `BETWEEN` SQL statement:
```sql
SELECT * FROM clients WHERE (clients.created_at BETWEEN '2008-12-21 00:00:00' AND '2008-12-22 00:00:00')
```
This demonstrates a shorter syntax for the examples in [Array Conditions](#array-conditions)
#### Subset Conditions
If you want to find records using the `IN` expression you can pass an array to the conditions hash:
```ruby
Client.where(orders_count: [1,3,5])
```
This code will generate SQL like this:
```sql
SELECT * FROM clients WHERE (clients.orders_count IN (1,3,5))
```
### NOT Conditions
`NOT` SQL queries can be built by `where.not`:
```ruby
Client.where.not(locked: true)
```
In other words, this query can be generated by calling `where` with no argument, then immediately chain with `not` passing `where` conditions. This will generate SQL like this:
```sql
SELECT * FROM clients WHERE (clients.locked != 1)
```
Ordering
--------
To retrieve records from the database in a specific order, you can use the `order` method.
For example, if you're getting a set of records and want to order them in ascending order by the `created_at` field in your table:
```ruby
Client.order(:created_at)
# OR
Client.order("created_at")
```
You could specify `ASC` or `DESC` as well:
```ruby
Client.order(created_at: :desc)
# OR
Client.order(created_at: :asc)
# OR
Client.order("created_at DESC")
# OR
Client.order("created_at ASC")
```
Or ordering by multiple fields:
```ruby
Client.order(orders_count: :asc, created_at: :desc)
# OR
Client.order(:orders_count, created_at: :desc)
# OR
Client.order("orders_count ASC, created_at DESC")
# OR
Client.order("orders_count ASC", "created_at DESC")
```
If you want to call `order` multiple times, subsequent orders will be appended to the first:
```ruby
Client.order("orders_count ASC").order("created_at DESC")
# SELECT * FROM clients ORDER BY orders_count ASC, created_at DESC
```
WARNING: If you are using **MySQL 5.7.5** and above, then on selecting fields from a result set using methods like `select`, `pluck` and `ids`; the `order` method will raise an `ActiveRecord::StatementInvalid` exception unless the field(s) used in `order` clause are included in the select list. See the next section for selecting fields from the result set.
Selecting Specific Fields
-------------------------
By default, `Model.find` selects all the fields from the result set using `select *`.
To select only a subset of fields from the result set, you can specify the subset via the `select` method.
For example, to select only `viewable_by` and `locked` columns:
```ruby
Client.select("viewable_by, locked")
```
The SQL query used by this find call will be somewhat like:
```sql
SELECT viewable_by, locked FROM clients
```
Be careful because this also means you're initializing a model object with only the fields that you've selected. If you attempt to access a field that is not in the initialized record you'll receive:
```bash
ActiveModel::MissingAttributeError: missing attribute: <attribute>
```
Where `<attribute>` is the attribute you asked for. The `id` method will not raise the `ActiveRecord::MissingAttributeError`, so just be careful when working with associations because they need the `id` method to function properly.
If you would like to only grab a single record per unique value in a certain field, you can use `distinct`:
```ruby
Client.select(:name).distinct
```
This would generate SQL like:
```sql
SELECT DISTINCT name FROM clients
```
You can also remove the uniqueness constraint:
```ruby
query = Client.select(:name).distinct
# => Returns unique names
query.distinct(false)
# => Returns all names, even if there are duplicates
```
Limit and Offset
----------------
To apply `LIMIT` to the SQL fired by the `Model.find`, you can specify the `LIMIT` using `limit` and `offset` methods on the relation.
You can use `limit` to specify the number of records to be retrieved, and use `offset` to specify the number of records to skip before starting to return the records. For example
```ruby
Client.limit(5)
```
will return a maximum of 5 clients and because it specifies no offset it will return the first 5 in the table. The SQL it executes looks like this:
```sql
SELECT * FROM clients LIMIT 5
```
Adding `offset` to that
```ruby
Client.limit(5).offset(30)
```
will return instead a maximum of 5 clients beginning with the 31st. The SQL looks like:
```sql
SELECT * FROM clients LIMIT 5 OFFSET 30
```
Group
-----
To apply a `GROUP BY` clause to the SQL fired by the finder, you can use the `group` method.
For example, if you want to find a collection of the dates on which orders were created:
```ruby
Order.select("date(created_at) as ordered_date, sum(price) as total_price").group("date(created_at)")
```
And this will give you a single `Order` object for each date where there are orders in the database.
The SQL that would be executed would be something like this:
```sql
SELECT date(created_at) as ordered_date, sum(price) as total_price
FROM orders
GROUP BY date(created_at)
```
### Total of grouped items
To get the total of grouped items on a single query, call `count` after the `group`.
```ruby
Order.group(:status).count
# => { 'awaiting_approval' => 7, 'paid' => 12 }
```
The SQL that would be executed would be something like this:
```sql
SELECT COUNT (*) AS count_all, status AS status
FROM "orders"
GROUP BY status
```
Having
------
SQL uses the `HAVING` clause to specify conditions on the `GROUP BY` fields. You can add the `HAVING` clause to the SQL fired by the `Model.find` by adding the `having` method to the find.
For example:
```ruby
Order.select("date(created_at) as ordered_date, sum(price) as total_price").
group("date(created_at)").having("sum(price) > ?", 100)
```
The SQL that would be executed would be something like this:
```sql
SELECT date(created_at) as ordered_date, sum(price) as total_price
FROM orders
GROUP BY date(created_at)
HAVING sum(price) > 100
```
This returns the date and total price for each order object, grouped by the day they were ordered and where the price is more than $100.
Overriding Conditions
---------------------
### `unscope`
You can specify certain conditions to be removed using the `unscope` method. For example:
```ruby
Article.where('id > 10').limit(20).order('id asc').unscope(:order)
```
The SQL that would be executed:
```sql
SELECT * FROM articles WHERE id > 10 LIMIT 20
# Original query without `unscope`
SELECT * FROM articles WHERE id > 10 ORDER BY id asc LIMIT 20
```
You can also unscope specific `where` clauses. For example:
```ruby
Article.where(id: 10, trashed: false).unscope(where: :id)
# SELECT "articles".* FROM "articles" WHERE trashed = 0
```
A relation which has used `unscope` will affect any relation into which it is merged:
```ruby
Article.order('id asc').merge(Article.unscope(:order))
# SELECT "articles".* FROM "articles"
```
### `only`
You can also override conditions using the `only` method. For example:
```ruby
Article.where('id > 10').limit(20).order('id desc').only(:order, :where)
```
The SQL that would be executed:
```sql
SELECT * FROM articles WHERE id > 10 ORDER BY id DESC
# Original query without `only`
SELECT "articles".* FROM "articles" WHERE (id > 10) ORDER BY id desc LIMIT 20
```
### `reorder`
The `reorder` method overrides the default scope order. For example:
```ruby
class Article < ApplicationRecord
has_many :comments, -> { order('posted_at DESC') }
end
Article.find(10).comments.reorder('name')
```
The SQL that would be executed:
```sql
SELECT * FROM articles WHERE id = 10
SELECT * FROM comments WHERE article_id = 10 ORDER BY name
```
In the case where the `reorder` clause is not used, the SQL executed would be:
```sql
SELECT * FROM articles WHERE id = 10
SELECT * FROM comments WHERE article_id = 10 ORDER BY posted_at DESC
```
### `reverse_order`
The `reverse_order` method reverses the ordering clause if specified.
```ruby
Client.where("orders_count > 10").order(:name).reverse_order
```
The SQL that would be executed:
```sql
SELECT * FROM clients WHERE orders_count > 10 ORDER BY name DESC
```
If no ordering clause is specified in the query, the `reverse_order` orders by the primary key in reverse order.
```ruby
Client.where("orders_count > 10").reverse_order
```
The SQL that would be executed:
```sql
SELECT * FROM clients WHERE orders_count > 10 ORDER BY clients.id DESC
```
This method accepts **no** arguments.
### `rewhere`
The `rewhere` method overrides an existing, named where condition. For example:
```ruby
Article.where(trashed: true).rewhere(trashed: false)
```
The SQL that would be executed:
```sql
SELECT * FROM articles WHERE `trashed` = 0
```
In case the `rewhere` clause is not used,
```ruby
Article.where(trashed: true).where(trashed: false)
```
the SQL executed would be:
```sql
SELECT * FROM articles WHERE `trashed` = 1 AND `trashed` = 0
```
Null Relation
-------------
The `none` method returns a chainable relation with no records. Any subsequent conditions chained to the returned relation will continue generating empty relations. This is useful in scenarios where you need a chainable response to a method or a scope that could return zero results.
```ruby
Article.none # returns an empty Relation and fires no queries.
```
```ruby
# The visible_articles method below is expected to return a Relation.
@articles = current_user.visible_articles.where(name: params[:name])
def visible_articles
case role
when 'Country Manager'
Article.where(country: country)
when 'Reviewer'
Article.published
when 'Bad User'
Article.none # => returning [] or nil breaks the caller code in this case
end
end
```
Readonly Objects
----------------
Active Record provides the `readonly` method on a relation to explicitly disallow modification of any of the returned objects. Any attempt to alter a readonly record will not succeed, raising an `ActiveRecord::ReadOnlyRecord` exception.
```ruby
client = Client.readonly.first
client.visits += 1
client.save
```
As `client` is explicitly set to be a readonly object, the above code will raise an `ActiveRecord::ReadOnlyRecord` exception when calling `client.save` with an updated value of _visits_.
Locking Records for Update
--------------------------
Locking is helpful for preventing race conditions when updating records in the database and ensuring atomic updates.
Active Record provides two locking mechanisms:
* Optimistic Locking
* Pessimistic Locking
### Optimistic Locking
Optimistic locking allows multiple users to access the same record for edits, and assumes a minimum of conflicts with the data. It does this by checking whether another process has made changes to a record since it was opened. An `ActiveRecord::StaleObjectError` exception is thrown if that has occurred and the update is ignored.
**Optimistic locking column**
In order to use optimistic locking, the table needs to have a column called `lock_version` of type integer. Each time the record is updated, Active Record increments the `lock_version` column. If an update request is made with a lower value in the `lock_version` field than is currently in the `lock_version` column in the database, the update request will fail with an `ActiveRecord::StaleObjectError`. Example:
```ruby
c1 = Client.find(1)
c2 = Client.find(1)
c1.first_name = "Michael"
c1.save
c2.name = "should fail"
c2.save # Raises an ActiveRecord::StaleObjectError
```
You're then responsible for dealing with the conflict by rescuing the exception and either rolling back, merging, or otherwise apply the business logic needed to resolve the conflict.
This behavior can be turned off by setting `ActiveRecord::Base.lock_optimistically = false`.
To override the name of the `lock_version` column, `ActiveRecord::Base` provides a class attribute called `locking_column`:
```ruby
class Client < ApplicationRecord
self.locking_column = :lock_client_column
end
```
### Pessimistic Locking
Pessimistic locking uses a locking mechanism provided by the underlying database. Using `lock` when building a relation obtains an exclusive lock on the selected rows. Relations using `lock` are usually wrapped inside a transaction for preventing deadlock conditions.
For example:
```ruby
Item.transaction do
i = Item.lock.first
i.name = 'Jones'
i.save!
end
```
The above session produces the following SQL for a MySQL backend:
```sql
SQL (0.2ms) BEGIN
Item Load (0.3ms) SELECT * FROM `items` LIMIT 1 FOR UPDATE
Item Update (0.4ms) UPDATE `items` SET `updated_at` = '2009-02-07 18:05:56', `name` = 'Jones' WHERE `id` = 1
SQL (0.8ms) COMMIT
```
You can also pass raw SQL to the `lock` method for allowing different types of locks. For example, MySQL has an expression called `LOCK IN SHARE MODE` where you can lock a record but still allow other queries to read it. To specify this expression just pass it in as the lock option:
```ruby
Item.transaction do
i = Item.lock("LOCK IN SHARE MODE").find(1)
i.increment!(:views)
end
```
If you already have an instance of your model, you can start a transaction and acquire the lock in one go using the following code:
```ruby
item = Item.first
item.with_lock do
# This block is called within a transaction,
# item is already locked.
item.increment!(:views)
end
```
Joining Tables
--------------
Active Record provides two finder methods for specifying `JOIN` clauses on the
resulting SQL: `joins` and `left_outer_joins`.
While `joins` should be used for `INNER JOIN` or custom queries,
`left_outer_joins` is used for queries using `LEFT OUTER JOIN`.
### `joins`
There are multiple ways to use the `joins` method.
#### Using a String SQL Fragment
You can just supply the raw SQL specifying the `JOIN` clause to `joins`:
```ruby
Author.joins("INNER JOIN posts ON posts.author_id = authors.id AND posts.published = 't'")
```
This will result in the following SQL:
```sql
SELECT authors.* FROM authors INNER JOIN posts ON posts.author_id = authors.id AND posts.published = 't'
```
#### Using Array/Hash of Named Associations
Active Record lets you use the names of the [associations](association_basics.html) defined on the model as a shortcut for specifying `JOIN` clauses for those associations when using the `joins` method.
For example, consider the following `Category`, `Article`, `Comment`, `Guest` and `Tag` models:
```ruby
class Category < ApplicationRecord
has_many :articles
end
class Article < ApplicationRecord
belongs_to :category
has_many :comments
has_many :tags
end
class Comment < ApplicationRecord
belongs_to :article
has_one :guest
end
class Guest < ApplicationRecord
belongs_to :comment
end
class Tag < ApplicationRecord
belongs_to :article
end
```
Now all of the following will produce the expected join queries using `INNER JOIN`:
##### Joining a Single Association
```ruby
Category.joins(:articles)
```
This produces:
```sql
SELECT categories.* FROM categories
INNER JOIN articles ON articles.category_id = categories.id
```
Or, in English: "return a Category object for all categories with articles". Note that you will see duplicate categories if more than one article has the same category. If you want unique categories, you can use `Category.joins(:articles).distinct`.
#### Joining Multiple Associations
```ruby
Article.joins(:category, :comments)
```
This produces:
```sql
SELECT articles.* FROM articles
INNER JOIN categories ON articles.category_id = categories.id
INNER JOIN comments ON comments.article_id = articles.id
```
Or, in English: "return all articles that have a category and at least one comment". Note again that articles with multiple comments will show up multiple times.
##### Joining Nested Associations (Single Level)
```ruby
Article.joins(comments: :guest)
```
This produces:
```sql
SELECT articles.* FROM articles
INNER JOIN comments ON comments.article_id = articles.id
INNER JOIN guests ON guests.comment_id = comments.id
```
Or, in English: "return all articles that have a comment made by a guest."
##### Joining Nested Associations (Multiple Level)
```ruby
Category.joins(articles: [{ comments: :guest }, :tags])
```
This produces:
```sql
SELECT categories.* FROM categories
INNER JOIN articles ON articles.category_id = categories.id
INNER JOIN comments ON comments.article_id = articles.id
INNER JOIN guests ON guests.comment_id = comments.id
INNER JOIN tags ON tags.article_id = articles.id
```
Or, in English: "return all categories that have articles, where those articles have a comment made by a guest, and where those articles also have a tag."
#### Specifying Conditions on the Joined Tables
You can specify conditions on the joined tables using the regular [Array](#array-conditions) and [String](#pure-string-conditions) conditions. [Hash conditions](#hash-conditions) provide a special syntax for specifying conditions for the joined tables:
```ruby
time_range = (Time.now.midnight - 1.day)..Time.now.midnight
Client.joins(:orders).where('orders.created_at' => time_range)
```
An alternative and cleaner syntax is to nest the hash conditions:
```ruby
time_range = (Time.now.midnight - 1.day)..Time.now.midnight
Client.joins(:orders).where(orders: { created_at: time_range })
```
This will find all clients who have orders that were created yesterday, again using a `BETWEEN` SQL expression.
### `left_outer_joins`
If you want to select a set of records whether or not they have associated
records you can use the `left_outer_joins` method.
```ruby
Author.left_outer_joins(:posts).distinct.select('authors.*, COUNT(posts.*) AS posts_count').group('authors.id')
```
Which produces:
```sql
SELECT DISTINCT authors.*, COUNT(posts.*) AS posts_count FROM "authors"
LEFT OUTER JOIN posts ON posts.author_id = authors.id GROUP BY authors.id
```
Which means: "return all authors with their count of posts, whether or not they
have any posts at all"
Eager Loading Associations
--------------------------
Eager loading is the mechanism for loading the associated records of the objects returned by `Model.find` using as few queries as possible.
**N + 1 queries problem**
Consider the following code, which finds 10 clients and prints their postcodes:
```ruby
clients = Client.limit(10)
clients.each do |client|
puts client.address.postcode
end
```
This code looks fine at the first sight. But the problem lies within the total number of queries executed. The above code executes 1 (to find 10 clients) + 10 (one per each client to load the address) = **11** queries in total.
**Solution to N + 1 queries problem**
Active Record lets you specify in advance all the associations that are going to be loaded. This is possible by specifying the `includes` method of the `Model.find` call. With `includes`, Active Record ensures that all of the specified associations are loaded using the minimum possible number of queries.
Revisiting the above case, we could rewrite `Client.limit(10)` to eager load addresses:
```ruby
clients = Client.includes(:address).limit(10)
clients.each do |client|
puts client.address.postcode
end
```
The above code will execute just **2** queries, as opposed to **11** queries in the previous case:
```sql
SELECT * FROM clients LIMIT 10
SELECT addresses.* FROM addresses
WHERE (addresses.client_id IN (1,2,3,4,5,6,7,8,9,10))
```
### Eager Loading Multiple Associations
Active Record lets you eager load any number of associations with a single `Model.find` call by using an array, hash, or a nested hash of array/hash with the `includes` method.
#### Array of Multiple Associations
```ruby
Article.includes(:category, :comments)
```
This loads all the articles and the associated category and comments for each article.
#### Nested Associations Hash
```ruby
Category.includes(articles: [{ comments: :guest }, :tags]).find(1)
```
This will find the category with id 1 and eager load all of the associated articles, the associated articles' tags and comments, and every comment's guest association.
### Specifying Conditions on Eager Loaded Associations
Even though Active Record lets you specify conditions on the eager loaded associations just like `joins`, the recommended way is to use [joins](#joining-tables) instead.
However if you must do this, you may use `where` as you would normally.
```ruby
Article.includes(:comments).where(comments: { visible: true })
```
This would generate a query which contains a `LEFT OUTER JOIN` whereas the
`joins` method would generate one using the `INNER JOIN` function instead.
```ruby
SELECT "articles"."id" AS t0_r0, ... "comments"."updated_at" AS t1_r5 FROM "articles" LEFT OUTER JOIN "comments" ON "comments"."article_id" = "articles"."id" WHERE (comments.visible = 1)
```
If there was no `where` condition, this would generate the normal set of two queries.
NOTE: Using `where` like this will only work when you pass it a Hash. For
SQL-fragments you need to use `references` to force joined tables:
```ruby
Article.includes(:comments).where("comments.visible = true").references(:comments)
```
If, in the case of this `includes` query, there were no comments for any
articles, all the articles would still be loaded. By using `joins` (an INNER
JOIN), the join conditions **must** match, otherwise no records will be
returned.
NOTE: If an association is eager loaded as part of a join, any fields from a custom select clause will not present be on the loaded models.
This is because it is ambiguous whether they should appear on the parent record, or the child.
Scopes
------
Scoping allows you to specify commonly-used queries which can be referenced as method calls on the association objects or models. With these scopes, you can use every method previously covered such as `where`, `joins` and `includes`. All scope methods will return an `ActiveRecord::Relation` object which will allow for further methods (such as other scopes) to be called on it.
To define a simple scope, we use the `scope` method inside the class, passing the query that we'd like to run when this scope is called:
```ruby
class Article < ApplicationRecord
scope :published, -> { where(published: true) }
end
```
This is exactly the same as defining a class method, and which you use is a matter of personal preference:
```ruby
class Article < ApplicationRecord
def self.published
where(published: true)
end
end
```
Scopes are also chainable within scopes:
```ruby
class Article < ApplicationRecord
scope :published, -> { where(published: true) }
scope :published_and_commented, -> { published.where("comments_count > 0") }
end
```
To call this `published` scope we can call it on either the class:
```ruby
Article.published # => [published articles]
```
Or on an association consisting of `Article` objects:
```ruby
category = Category.first
category.articles.published # => [published articles belonging to this category]
```
### Passing in arguments
Your scope can take arguments:
```ruby
class Article < ApplicationRecord
scope :created_before, ->(time) { where("created_at < ?", time) }
end
```
Call the scope as if it were a class method:
```ruby
Article.created_before(Time.zone.now)
```
However, this is just duplicating the functionality that would be provided to you by a class method.
```ruby
class Article < ApplicationRecord
def self.created_before(time)
where("created_at < ?", time)
end
end
```
Using a class method is the preferred way to accept arguments for scopes. These methods will still be accessible on the association objects:
```ruby
category.articles.created_before(time)
```
### Using conditionals
Your scope can utilize conditionals:
```ruby
class Article < ApplicationRecord
scope :created_before, ->(time) { where("created_at < ?", time) if time.present? }
end
```
Like the other examples, this will behave similarly to a class method.
```ruby
class Article < ApplicationRecord
def self.created_before(time)
where("created_at < ?", time) if time.present?
end
end
```
However, there is one important caveat: A scope will always return an `ActiveRecord::Relation` object, even if the conditional evaluates to `false`, whereas a class method, will return `nil`. This can cause `NoMethodError` when chaining class methods with conditionals, if any of the conditionals return `false`.
### Applying a default scope
If we wish for a scope to be applied across all queries to the model we can use the
`default_scope` method within the model itself.
```ruby
class Client < ApplicationRecord
default_scope { where("removed_at IS NULL") }
end
```
When queries are executed on this model, the SQL query will now look something like
this:
```sql
SELECT * FROM clients WHERE removed_at IS NULL
```
If you need to do more complex things with a default scope, you can alternatively
define it as a class method:
```ruby
class Client < ApplicationRecord
def self.default_scope
# Should return an ActiveRecord::Relation.
end
end
```
NOTE: The `default_scope` is also applied while creating/building a record.
It is not applied while updating a record. E.g.:
```ruby
class Client < ApplicationRecord
default_scope { where(active: true) }
end
Client.new # => #<Client id: nil, active: true>
Client.unscoped.new # => #<Client id: nil, active: nil>
```
### Merging of scopes
Just like `where` clauses scopes are merged using `AND` conditions.
```ruby
class User < ApplicationRecord
scope :active, -> { where state: 'active' }
scope :inactive, -> { where state: 'inactive' }
end
User.active.inactive
# SELECT "users".* FROM "users" WHERE "users"."state" = 'active' AND "users"."state" = 'inactive'
```
We can mix and match `scope` and `where` conditions and the final sql
will have all conditions joined with `AND`.
```ruby
User.active.where(state: 'finished')
# SELECT "users".* FROM "users" WHERE "users"."state" = 'active' AND "users"."state" = 'finished'
```
If we do want the last `where` clause to win then `Relation#merge` can
be used.
```ruby
User.active.merge(User.inactive)
# SELECT "users".* FROM "users" WHERE "users"."state" = 'inactive'
```
One important caveat is that `default_scope` will be prepended in
`scope` and `where` conditions.
```ruby
class User < ApplicationRecord
default_scope { where state: 'pending' }
scope :active, -> { where state: 'active' }
scope :inactive, -> { where state: 'inactive' }
end
User.all
# SELECT "users".* FROM "users" WHERE "users"."state" = 'pending'
User.active
# SELECT "users".* FROM "users" WHERE "users"."state" = 'pending' AND "users"."state" = 'active'
User.where(state: 'inactive')
# SELECT "users".* FROM "users" WHERE "users"."state" = 'pending' AND "users"."state" = 'inactive'
```
As you can see above the `default_scope` is being merged in both
`scope` and `where` conditions.
### Removing All Scoping
If we wish to remove scoping for any reason we can use the `unscoped` method. This is
especially useful if a `default_scope` is specified in the model and should not be
applied for this particular query.
```ruby
Client.unscoped.load
```
This method removes all scoping and will do a normal query on the table.
```ruby
Client.unscoped.all
# SELECT "clients".* FROM "clients"
Client.where(published: false).unscoped.all
# SELECT "clients".* FROM "clients"
```
`unscoped` can also accept a block.
```ruby
Client.unscoped {
Client.created_before(Time.zone.now)
}
```
Dynamic Finders
---------------
For every field (also known as an attribute) you define in your table, Active Record provides a finder method. If you have a field called `first_name` on your `Client` model for example, you get `find_by_first_name` for free from Active Record. If you have a `locked` field on the `Client` model, you also get `find_by_locked` method.
You can specify an exclamation point (`!`) on the end of the dynamic finders to get them to raise an `ActiveRecord::RecordNotFound` error if they do not return any records, like `Client.find_by_name!("Ryan")`
If you want to find both by name and locked, you can chain these finders together by simply typing "`and`" between the fields. For example, `Client.find_by_first_name_and_locked("Ryan", true)`.
Enums
-----
The `enum` macro maps an integer column to a set of possible values.
```ruby
class Book < ApplicationRecord
enum availability: [:available, :unavailable]
end
```
This will automatically create the corresponding [scopes](#scopes) to query the
model. Methods to transition between states and query the current state are also
added.
```ruby
# Both examples below query just available books.
Book.available
# or
Book.where(availability: :available)
book = Book.new(availability: :available)
book.available? # => true
book.unavailable! # => true
book.available? # => false
```
Read the full documentation about enums
[in the Rails API docs](http://api.rubyonrails.org/classes/ActiveRecord/Enum.html).
Understanding The Method Chaining
---------------------------------
The Active Record pattern implements [Method Chaining](http://en.wikipedia.org/wiki/Method_chaining),
which allow us to use multiple Active Record methods together in a simple and straightforward way.
You can chain methods in a statement when the previous method called returns an
`ActiveRecord::Relation`, like `all`, `where`, and `joins`. Methods that return
a single object (see [Retrieving a Single Object Section](#retrieving-a-single-object))
have to be at the end of the statement.
There are some examples below. This guide won't cover all the possibilities, just a few as examples.
When an Active Record method is called, the query is not immediately generated and sent to the database,
this just happens when the data is actually needed. So each example below generates a single query.
### Retrieving filtered data from multiple tables
```ruby
Person
.select('people.id, people.name, comments.text')
.joins(:comments)
.where('comments.created_at > ?', 1.week.ago)
```
The result should be something like this:
```sql
SELECT people.id, people.name, comments.text
FROM people
INNER JOIN comments
ON comments.person_id = people.id
WHERE comments.created_at = '2015-01-01'
```
### Retrieving specific data from multiple tables
```ruby
Person
.select('people.id, people.name, companies.name')
.joins(:company)
.find_by('people.name' => 'John') # this should be the last
```
The above should generate:
```sql
SELECT people.id, people.name, companies.name
FROM people
INNER JOIN companies
ON companies.person_id = people.id
WHERE people.name = 'John'
LIMIT 1
```
NOTE: Note that if a query matches multiple records, `find_by` will
fetch only the first one and ignore the others (see the `LIMIT 1`
statement above).
Find or Build a New Object
--------------------------
It's common that you need to find a record or create it if it doesn't exist. You can do that with the `find_or_create_by` and `find_or_create_by!` methods.
### `find_or_create_by`
The `find_or_create_by` method checks whether a record with the specified attributes exists. If it doesn't, then `create` is called. Let's see an example.
Suppose you want to find a client named 'Andy', and if there's none, create one. You can do so by running:
```ruby
Client.find_or_create_by(first_name: 'Andy')
# => #<Client id: 1, first_name: "Andy", orders_count: 0, locked: true, created_at: "2011-08-30 06:09:27", updated_at: "2011-08-30 06:09:27">
```
The SQL generated by this method looks like this:
```sql
SELECT * FROM clients WHERE (clients.first_name = 'Andy') LIMIT 1
BEGIN
INSERT INTO clients (created_at, first_name, locked, orders_count, updated_at) VALUES ('2011-08-30 05:22:57', 'Andy', 1, NULL, '2011-08-30 05:22:57')
COMMIT
```
`find_or_create_by` returns either the record that already exists or the new record. In our case, we didn't already have a client named Andy so the record is created and returned.
The new record might not be saved to the database; that depends on whether validations passed or not (just like `create`).
Suppose we want to set the 'locked' attribute to `false` if we're
creating a new record, but we don't want to include it in the query. So
we want to find the client named "Andy", or if that client doesn't
exist, create a client named "Andy" which is not locked.
We can achieve this in two ways. The first is to use `create_with`:
```ruby
Client.create_with(locked: false).find_or_create_by(first_name: 'Andy')
```
The second way is using a block:
```ruby
Client.find_or_create_by(first_name: 'Andy') do |c|
c.locked = false
end
```
The block will only be executed if the client is being created. The
second time we run this code, the block will be ignored.
### `find_or_create_by!`
You can also use `find_or_create_by!` to raise an exception if the new record is invalid. Validations are not covered on this guide, but let's assume for a moment that you temporarily add
```ruby
validates :orders_count, presence: true
```
to your `Client` model. If you try to create a new `Client` without passing an `orders_count`, the record will be invalid and an exception will be raised:
```ruby
Client.find_or_create_by!(first_name: 'Andy')
# => ActiveRecord::RecordInvalid: Validation failed: Orders count can't be blank
```
### `find_or_initialize_by`
The `find_or_initialize_by` method will work just like
`find_or_create_by` but it will call `new` instead of `create`. This
means that a new model instance will be created in memory but won't be
saved to the database. Continuing with the `find_or_create_by` example, we
now want the client named 'Nick':
```ruby
nick = Client.find_or_initialize_by(first_name: 'Nick')
# => #<Client id: nil, first_name: "Nick", orders_count: 0, locked: true, created_at: "2011-08-30 06:09:27", updated_at: "2011-08-30 06:09:27">
nick.persisted?
# => false
nick.new_record?
# => true
```
Because the object is not yet stored in the database, the SQL generated looks like this:
```sql
SELECT * FROM clients WHERE (clients.first_name = 'Nick') LIMIT 1
```
When you want to save it to the database, just call `save`:
```ruby
nick.save
# => true
```
Finding by SQL
--------------
If you'd like to use your own SQL to find records in a table you can use `find_by_sql`. The `find_by_sql` method will return an array of objects even if the underlying query returns just a single record. For example you could run this query:
```ruby
Client.find_by_sql("SELECT * FROM clients
INNER JOIN orders ON clients.id = orders.client_id
ORDER BY clients.created_at desc")
# => [
# #<Client id: 1, first_name: "Lucas" >,
# #<Client id: 2, first_name: "Jan" >,
# ...
# ]
```
`find_by_sql` provides you with a simple way of making custom calls to the database and retrieving instantiated objects.
### `select_all`
`find_by_sql` has a close relative called `connection#select_all`. `select_all` will retrieve objects from the database using custom SQL just like `find_by_sql` but will not instantiate them. Instead, you will get an array of hashes where each hash indicates a record.
```ruby
Client.connection.select_all("SELECT first_name, created_at FROM clients WHERE id = '1'")
# => [
# {"first_name"=>"Rafael", "created_at"=>"2012-11-10 23:23:45.281189"},
# {"first_name"=>"Eileen", "created_at"=>"2013-12-09 11:22:35.221282"}
# ]
```
### `pluck`
`pluck` can be used to query single or multiple columns from the underlying table of a model. It accepts a list of column names as argument and returns an array of values of the specified columns with the corresponding data type.
```ruby
Client.where(active: true).pluck(:id)
# SELECT id FROM clients WHERE active = 1
# => [1, 2, 3]
Client.distinct.pluck(:role)
# SELECT DISTINCT role FROM clients
# => ['admin', 'member', 'guest']
Client.pluck(:id, :name)
# SELECT clients.id, clients.name FROM clients
# => [[1, 'David'], [2, 'Jeremy'], [3, 'Jose']]
```
`pluck` makes it possible to replace code like:
```ruby
Client.select(:id).map { |c| c.id }
# or
Client.select(:id).map(&:id)
# or
Client.select(:id, :name).map { |c| [c.id, c.name] }
```
with:
```ruby
Client.pluck(:id)
# or
Client.pluck(:id, :name)
```
Unlike `select`, `pluck` directly converts a database result into a Ruby `Array`,
without constructing `ActiveRecord` objects. This can mean better performance for
a large or often-running query. However, any model method overrides will
not be available. For example:
```ruby
class Client < ApplicationRecord
def name
"I am #{super}"
end
end
Client.select(:name).map &:name
# => ["I am David", "I am Jeremy", "I am Jose"]
Client.pluck(:name)
# => ["David", "Jeremy", "Jose"]
```
Furthermore, unlike `select` and other `Relation` scopes, `pluck` triggers an immediate
query, and thus cannot be chained with any further scopes, although it can work with
scopes already constructed earlier:
```ruby
Client.pluck(:name).limit(1)
# => NoMethodError: undefined method `limit' for #<Array:0x007ff34d3ad6d8>
Client.limit(1).pluck(:name)
# => ["David"]
```
### `ids`
`ids` can be used to pluck all the IDs for the relation using the table's primary key.
```ruby
Person.ids
# SELECT id FROM people
```
```ruby
class Person < ApplicationRecord
self.primary_key = "person_id"
end
Person.ids
# SELECT person_id FROM people
```
Existence of Objects
--------------------
If you simply want to check for the existence of the object there's a method called `exists?`.
This method will query the database using the same query as `find`, but instead of returning an
object or collection of objects it will return either `true` or `false`.
```ruby
Client.exists?(1)
```
The `exists?` method also takes multiple values, but the catch is that it will return `true` if any
one of those records exists.
```ruby
Client.exists?(id: [1,2,3])
# or
Client.exists?(name: ['John', 'Sergei'])
```
It's even possible to use `exists?` without any arguments on a model or a relation.
```ruby
Client.where(first_name: 'Ryan').exists?
```
The above returns `true` if there is at least one client with the `first_name` 'Ryan' and `false`
otherwise.
```ruby
Client.exists?
```
The above returns `false` if the `clients` table is empty and `true` otherwise.
You can also use `any?` and `many?` to check for existence on a model or relation.
```ruby
# via a model
Article.any?
Article.many?
# via a named scope
Article.recent.any?
Article.recent.many?
# via a relation
Article.where(published: true).any?
Article.where(published: true).many?
# via an association
Article.first.categories.any?
Article.first.categories.many?
```
Calculations
------------
This section uses count as an example method in this preamble, but the options described apply to all sub-sections.
All calculation methods work directly on a model:
```ruby
Client.count
# SELECT count(*) AS count_all FROM clients
```
Or on a relation:
```ruby
Client.where(first_name: 'Ryan').count
# SELECT count(*) AS count_all FROM clients WHERE (first_name = 'Ryan')
```
You can also use various finder methods on a relation for performing complex calculations:
```ruby
Client.includes("orders").where(first_name: 'Ryan', orders: { status: 'received' }).count
```
Which will execute:
```sql
SELECT count(DISTINCT clients.id) AS count_all FROM clients
LEFT OUTER JOIN orders ON orders.client_id = client.id WHERE
(clients.first_name = 'Ryan' AND orders.status = 'received')
```
### Count
If you want to see how many records are in your model's table you could call `Client.count` and that will return the number. If you want to be more specific and find all the clients with their age present in the database you can use `Client.count(:age)`.
For options, please see the parent section, [Calculations](#calculations).
### Average
If you want to see the average of a certain number in one of your tables you can call the `average` method on the class that relates to the table. This method call will look something like this:
```ruby
Client.average("orders_count")
```
This will return a number (possibly a floating point number such as 3.14159265) representing the average value in the field.
For options, please see the parent section, [Calculations](#calculations).
### Minimum
If you want to find the minimum value of a field in your table you can call the `minimum` method on the class that relates to the table. This method call will look something like this:
```ruby
Client.minimum("age")
```
For options, please see the parent section, [Calculations](#calculations).
### Maximum
If you want to find the maximum value of a field in your table you can call the `maximum` method on the class that relates to the table. This method call will look something like this:
```ruby
Client.maximum("age")
```
For options, please see the parent section, [Calculations](#calculations).
### Sum
If you want to find the sum of a field for all records in your table you can call the `sum` method on the class that relates to the table. This method call will look something like this:
```ruby
Client.sum("orders_count")
```
For options, please see the parent section, [Calculations](#calculations).
Running EXPLAIN
---------------
You can run EXPLAIN on the queries triggered by relations. For example,
```ruby
User.where(id: 1).joins(:articles).explain
```
may yield
```
EXPLAIN for: SELECT `users`.* FROM `users` INNER JOIN `articles` ON `articles`.`user_id` = `users`.`id` WHERE `users`.`id` = 1
+----+-------------+----------+-------+---------------+
| id | select_type | table | type | possible_keys |
+----+-------------+----------+-------+---------------+
| 1 | SIMPLE | users | const | PRIMARY |
| 1 | SIMPLE | articles | ALL | NULL |
+----+-------------+----------+-------+---------------+
+---------+---------+-------+------+-------------+
| key | key_len | ref | rows | Extra |
+---------+---------+-------+------+-------------+
| PRIMARY | 4 | const | 1 | |
| NULL | NULL | NULL | 1 | Using where |
+---------+---------+-------+------+-------------+
2 rows in set (0.00 sec)
```
under MySQL and MariaDB.
Active Record performs a pretty printing that emulates that of the
corresponding database shell. So, the same query running with the
PostgreSQL adapter would yield instead
```
EXPLAIN for: SELECT "users".* FROM "users" INNER JOIN "articles" ON "articles"."user_id" = "users"."id" WHERE "users"."id" = 1
QUERY PLAN
------------------------------------------------------------------------------
Nested Loop Left Join (cost=0.00..37.24 rows=8 width=0)
Join Filter: (articles.user_id = users.id)
-> Index Scan using users_pkey on users (cost=0.00..8.27 rows=1 width=4)
Index Cond: (id = 1)
-> Seq Scan on articles (cost=0.00..28.88 rows=8 width=4)
Filter: (articles.user_id = 1)
(6 rows)
```
Eager loading may trigger more than one query under the hood, and some queries
may need the results of previous ones. Because of that, `explain` actually
executes the query, and then asks for the query plans. For example,
```ruby
User.where(id: 1).includes(:articles).explain
```
yields
```
EXPLAIN for: SELECT `users`.* FROM `users` WHERE `users`.`id` = 1
+----+-------------+-------+-------+---------------+
| id | select_type | table | type | possible_keys |
+----+-------------+-------+-------+---------------+
| 1 | SIMPLE | users | const | PRIMARY |
+----+-------------+-------+-------+---------------+
+---------+---------+-------+------+-------+
| key | key_len | ref | rows | Extra |
+---------+---------+-------+------+-------+
| PRIMARY | 4 | const | 1 | |
+---------+---------+-------+------+-------+
1 row in set (0.00 sec)
EXPLAIN for: SELECT `articles`.* FROM `articles` WHERE `articles`.`user_id` IN (1)
+----+-------------+----------+------+---------------+
| id | select_type | table | type | possible_keys |
+----+-------------+----------+------+---------------+
| 1 | SIMPLE | articles | ALL | NULL |
+----+-------------+----------+------+---------------+
+------+---------+------+------+-------------+
| key | key_len | ref | rows | Extra |
+------+---------+------+------+-------------+
| NULL | NULL | NULL | 1 | Using where |
+------+---------+------+------+-------------+
1 row in set (0.00 sec)
```
under MySQL and MariaDB.
### Interpreting EXPLAIN
Interpretation of the output of EXPLAIN is beyond the scope of this guide. The
following pointers may be helpful:
* SQLite3: [EXPLAIN QUERY PLAN](http://www.sqlite.org/eqp.html)
* MySQL: [EXPLAIN Output Format](http://dev.mysql.com/doc/refman/5.7/en/explain-output.html)
* MariaDB: [EXPLAIN](https://mariadb.com/kb/en/mariadb/explain/)
* PostgreSQL: [Using EXPLAIN](http://www.postgresql.org/docs/current/static/using-explain.html)
|