1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
|
= Active Record -- Object-relation mapping put on rails
Active Record connects business objects and database tables to create a persistable
domain model where logic and data are presented in one wrapping. It's an implementation
of the object-relational mapping (ORM) pattern[http://www.martinfowler.com/eaaCatalog/activeRecord.html]
by the same name as described by Martin Fowler:
"An object that wraps a row in a database table or view, encapsulates
the database access, and adds domain logic on that data."
Active Record's main contribution to the pattern is to relieve the original of two stunting problems:
lack of associations and inheritance. By adding a simple domain language-like set of macros to describe
the former and integrating the Single Table Inheritance pattern for the latter, Active Record narrows the
gap of functionality between the data mapper and active record approach.
A short rundown of the major features:
* Automated mapping between classes and tables, attributes and columns.
class Product < ActiveRecord::Base; end
...is automatically mapped to the table named "products", such as:
CREATE TABLE products (
id int(11) NOT NULL auto_increment,
name varchar(255),
PRIMARY KEY (id)
);
...which again gives Product#name and Product#name=(new_name)
{Learn more}[link:classes/ActiveRecord/Base.html]
* Associations between objects controlled by simple meta-programming macros.
class Firm < ActiveRecord::Base
has_many :clients
has_one :account
belongs_to :conglomorate
end
{Learn more}[link:classes/ActiveRecord/Associations/ClassMethods.html]
* Aggregations of value objects controlled by simple meta-programming macros.
class Account < ActiveRecord::Base
composed_of :balance, :class_name => "Money",
:mapping => %w(balance amount)
composed_of :address,
:mapping => [%w(address_street street), %w(address_city city)]
end
{Learn more}[link:classes/ActiveRecord/Aggregations/ClassMethods.html]
* Validation rules that can differ for new or existing objects.
class Account < ActiveRecord::Base
validates_presence_of :subdomain, :name, :email_address, :password
validates_uniqueness_of :subdomain
validates_acceptance_of :terms_of_service, :on => :create
validates_confirmation_of :password, :email_address, :on => :create
end
{Learn more}[link:classes/ActiveRecord/Validations.html]
* Acts that can make records work as lists or trees:
class Item < ActiveRecord::Base
belongs_to :list
acts_as_list :scope => :list
end
item.move_higher
item.move_to_bottom
Learn about {acts_as_list}[link:classes/ActiveRecord/Acts/List/ClassMethods.html], {the instance methods acts_as_list provides}[link:classes/ActiveRecord/Acts/List/InstanceMethods.html], and
{acts_as_tree}[link:classes/ActiveRecord/Acts/Tree/ClassMethods.html]
* Callbacks as methods or queues on the entire lifecycle (instantiation, saving, destroying, validating, etc).
class Person < ActiveRecord::Base
def before_destroy # is called just before Person#destroy
CreditCard.find(credit_card_id).destroy
end
end
class Account < ActiveRecord::Base
after_find :eager_load, 'self.class.announce(#{id})'
end
{Learn more}[link:classes/ActiveRecord/Callbacks.html]
* Observers for the entire lifecycle
class CommentObserver < ActiveRecord::Observer
def after_create(comment) # is called just after Comment#save
Notifications.deliver_new_comment("david@loudthinking.com", comment)
end
end
{Learn more}[link:classes/ActiveRecord/Observer.html]
* Inheritance hierarchies
class Company < ActiveRecord::Base; end
class Firm < Company; end
class Client < Company; end
class PriorityClient < Client; end
{Learn more}[link:classes/ActiveRecord/Base.html]
* Transaction support on both a database and object level. The latter is implemented
by using Transaction::Simple[http://railsmanual.com/module/Transaction::Simple]
# Just database transaction
Account.transaction do
david.withdrawal(100)
mary.deposit(100)
end
# Database and object transaction
Account.transaction(david, mary) do
david.withdrawal(100)
mary.deposit(100)
end
{Learn more}[link:classes/ActiveRecord/Transactions/ClassMethods.html]
* Reflections on columns, associations, and aggregations
reflection = Firm.reflect_on_association(:clients)
reflection.klass # => Client (class)
Firm.columns # Returns an array of column descriptors for the firms table
{Learn more}[link:classes/ActiveRecord/Reflection/ClassMethods.html]
* Direct manipulation (instead of service invocation)
So instead of (Hibernate[http://www.hibernate.org/] example):
long pkId = 1234;
DomesticCat pk = (DomesticCat) sess.load( Cat.class, new Long(pkId) );
// something interesting involving a cat...
sess.save(cat);
sess.flush(); // force the SQL INSERT
Active Record lets you:
pkId = 1234
cat = Cat.find(pkId)
# something even more interesting involving the same cat...
cat.save
{Learn more}[link:classes/ActiveRecord/Base.html]
* Database abstraction through simple adapters (~100 lines) with a shared connector
ActiveRecord::Base.establish_connection(:adapter => "sqlite", :database => "dbfile")
ActiveRecord::Base.establish_connection(
:adapter => "mysql",
:host => "localhost",
:username => "me",
:password => "secret",
:database => "activerecord"
)
{Learn more}[link:classes/ActiveRecord/Base.html#M000081] and read about the built-in support for
MySQL[link:classes/ActiveRecord/ConnectionAdapters/MysqlAdapter.html], PostgreSQL[link:classes/ActiveRecord/ConnectionAdapters/PostgreSQLAdapter.html], SQLite[link:classes/ActiveRecord/ConnectionAdapters/SQLiteAdapter.html], Oracle[link:classes/ActiveRecord/ConnectionAdapters/OCIAdapter.html], SQLServer[link:classes/ActiveRecord/ConnectionAdapters/SQLServerAdapter.html], and DB2[link:classes/ActiveRecord/ConnectionAdapters/DB2Adapter.html].
* Logging support for Log4r[http://log4r.sourceforge.net] and Logger[http://www.ruby-doc.org/stdlib/libdoc/logger/rdoc]
ActiveRecord::Base.logger = Logger.new(STDOUT)
ActiveRecord::Base.logger = Log4r::Logger.new("Application Log")
== Simple example (1/2): Defining tables and classes (using MySQL)
Data definitions are specified only in the database. Active Record queries the database for
the column names (that then serves to determine which attributes are valid) on regular
object instantiation through the new constructor and relies on the column names in the rows
with the finders.
# CREATE TABLE companies (
# id int(11) unsigned NOT NULL auto_increment,
# client_of int(11),
# name varchar(255),
# type varchar(100),
# PRIMARY KEY (id)
# )
Active Record automatically links the "Company" object to the "companies" table
class Company < ActiveRecord::Base
has_many :people, :class_name => "Person"
end
class Firm < Company
has_many :clients
def people_with_all_clients
clients.inject([]) { |people, client| people + client.people }
end
end
The foreign_key is only necessary because we didn't use "firm_id" in the data definition
class Client < Company
belongs_to :firm, :foreign_key => "client_of"
end
# CREATE TABLE people (
# id int(11) unsigned NOT NULL auto_increment,
# name text,
# company_id text,
# PRIMARY KEY (id)
# )
Active Record will also automatically link the "Person" object to the "people" table
class Person < ActiveRecord::Base
belongs_to :company
end
== Simple example (2/2): Using the domain
Picking a database connection for all the Active Records
ActiveRecord::Base.establish_connection(
:adapter => "mysql",
:host => "localhost",
:username => "me",
:password => "secret",
:database => "activerecord"
)
Create some fixtures
firm = Firm.new("name" => "Next Angle")
# SQL: INSERT INTO companies (name, type) VALUES("Next Angle", "Firm")
firm.save
client = Client.new("name" => "37signals", "client_of" => firm.id)
# SQL: INSERT INTO companies (name, client_of, type) VALUES("37signals", 1, "Firm")
client.save
Lots of different finders
# SQL: SELECT * FROM companies WHERE id = 1
next_angle = Company.find(1)
# SQL: SELECT * FROM companies WHERE id = 1 AND type = 'Firm'
next_angle = Firm.find(1)
# SQL: SELECT * FROM companies WHERE id = 1 AND name = 'Next Angle'
next_angle = Company.find(:first, :conditions => "name = 'Next Angle'")
next_angle = Firm.find_by_sql("SELECT * FROM companies WHERE id = 1").first
The supertype, Company, will return subtype instances
Firm === next_angle
All the dynamic methods added by the has_many macro
next_angle.clients.empty? # true
next_angle.clients.size # total number of clients
all_clients = next_angle.clients
Constrained finds makes access security easier when ID comes from a web-app
# SQL: SELECT * FROM companies WHERE client_of = 1 AND type = 'Client' AND id = 2
thirty_seven_signals = next_angle.clients.find(2)
Bi-directional associations thanks to the "belongs_to" macro
thirty_seven_signals.firm.nil? # true
== Examples
Active Record ships with a couple of examples that should give you a good feel for
operating usage. Be sure to edit the <tt>examples/shared_setup.rb</tt> file for your
own database before running the examples. Possibly also the table definition SQL in
the examples themselves.
It's also highly recommended to have a look at the unit tests. Read more in link:files/RUNNING_UNIT_TESTS.html
== Philosophy
Active Record attempts to provide a coherent wrapper as a solution for the inconvenience that is
object-relational mapping. The prime directive for this mapping has been to minimize
the amount of code needed to build a real-world domain model. This is made possible
by relying on a number of conventions that make it easy for Active Record to infer
complex relations and structures from a minimal amount of explicit direction.
Convention over Configuration:
* No XML-files!
* Lots of reflection and run-time extension
* Magic is not inherently a bad word
Admit the Database:
* Lets you drop down to SQL for odd cases and performance
* Doesn't attempt to duplicate or replace data definitions
== Download
The latest version of Active Record can be found at
* http://rubyforge.org/project/showfiles.php?group_id=182
Documentation can be found at
* http://ar.rubyonrails.com
== Installation
The prefered method of installing Active Record is through its GEM file. You'll need to have
RubyGems[http://rubygems.rubyforge.org/wiki/wiki.pl] installed for that, though. If you have,
then use:
% [sudo] gem install activerecord-1.10.0.gem
You can also install Active Record the old-fashion way with the following command:
% [sudo] ruby install.rb
from its distribution directory.
== License
Active Record is released under the MIT license.
== Support
The Active Record homepage is http://www.rubyonrails.com. You can find the Active Record
RubyForge page at http://rubyforge.org/projects/activerecord. And as Jim from Rake says:
Feel free to submit commits or feature requests. If you send a patch,
remember to update the corresponding unit tests. If fact, I prefer
new feature to be submitted in the form of new unit tests.
For other information, feel free to ask on the ruby-talk mailing list
(which is mirrored to comp.lang.ruby) or contact mailto:david@loudthinking.com.
|