1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
  | 
require 'action_dispatch/journey/nfa/dot'
module ActionDispatch
  module Journey # :nodoc:
    module NFA # :nodoc:
      class TransitionTable # :nodoc:
        include Journey::NFA::Dot
        attr_accessor :accepting
        attr_reader :memos
        def initialize
          @table     = Hash.new { |h,f| h[f] = {} }
          @memos     = {}
          @accepting = nil
          @inverted  = nil
        end
        def accepting?(state)
          accepting == state
        end
        def accepting_states
          [accepting]
        end
        def add_memo(idx, memo)
          @memos[idx] = memo
        end
        def memo(idx)
          @memos[idx]
        end
        def []=(i, f, s)
          @table[f][i] = s
        end
        def merge(left, right)
          @memos[right] = @memos.delete(left)
          @table[right] = @table.delete(left)
        end
        def states
          (@table.keys + @table.values.map(&:keys).flatten).uniq
        end
        # Returns a generalized transition graph with reduced states. The states
        # are reduced like a DFA, but the table must be simulated like an NFA.
        #
        # Edges of the GTG are regular expressions.
        def generalized_table
          gt       = GTG::TransitionTable.new
          marked   = {}
          state_id = Hash.new { |h,k| h[k] = h.length }
          alphabet = self.alphabet
          stack = [eclosure(0)]
          until stack.empty?
            state = stack.pop
            next if marked[state] || state.empty?
            marked[state] = true
            alphabet.each do |alpha|
              next_state = eclosure(following_states(state, alpha))
              next if next_state.empty?
              gt[state_id[state], state_id[next_state]] = alpha
              stack << next_state
            end
          end
          final_groups = state_id.keys.find_all { |s|
            s.sort.last == accepting
          }
          final_groups.each do |states|
            id = state_id[states]
            gt.add_accepting(id)
            save = states.find { |s|
              @memos.key?(s) && eclosure(s).sort.last == accepting
            }
            gt.add_memo(id, memo(save))
          end
          gt
        end
        # Returns set of NFA states to which there is a transition on ast symbol
        # +a+ from some state +s+ in +t+.
        def following_states(t, a)
          Array(t).map { |s| inverted[s][a] }.flatten.uniq
        end
        # Returns set of NFA states to which there is a transition on ast symbol
        # +a+ from some state +s+ in +t+.
        def move(t, a)
          Array(t).map { |s|
            inverted[s].keys.compact.find_all { |sym|
              sym === a
            }.map { |sym| inverted[s][sym] }
          }.flatten.uniq
        end
        def alphabet
          inverted.values.map(&:keys).flatten.compact.uniq.sort_by { |x| x.to_s }
        end
        # Returns a set of NFA states reachable from some NFA state +s+ in set
        # +t+ on nil-transitions alone.
        def eclosure(t)
          stack = Array(t)
          seen  = {}
          children = []
          until stack.empty?
            s = stack.pop
            next if seen[s]
            seen[s] = true
            children << s
            stack.concat(inverted[s][nil])
          end
          children.uniq
        end
        def transitions
          @table.map { |to, hash|
            hash.map { |from, sym| [from, sym, to] }
          }.flatten(1)
        end
        private
          def inverted
            return @inverted if @inverted
            @inverted = Hash.new { |h, from|
              h[from] = Hash.new { |j, s| j[s] = [] }
            }
            @table.each { |to, hash|
              hash.each { |from, sym|
                if sym
                  sym = Nodes::Symbol === sym ? sym.regexp : sym.left
                end
                @inverted[from][sym] << to
              }
            }
            @inverted
          end
      end
    end
  end
end
 
  |