1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
# Arel [![Build Status](https://secure.travis-ci.org/rails/arel.svg?branch=master)](http://travis-ci.org/rails/arel) [![Dependency Status](https://gemnasium.com/rails/arel.svg)](https://gemnasium.com/rails/arel)
* http://github.com/rails/arel
## DESCRIPTION
Arel Really Exasperates Logicians
Arel is a SQL AST manager for Ruby. It
1. Simplifies the generation of complex SQL queries
2. Adapts to various RDBMSes
It is intended to be a framework framework; that is, you can build your own ORM
with it, focusing on innovative object and collection modeling as opposed to
database compatibility and query generation.
## Status
For the moment, Arel uses Active Record's connection adapters to connect to the various engines, connection pooling, perform quoting, and do type conversion.
## A Gentle Introduction
Generating a query with Arel is simple. For example, in order to produce
```sql
SELECT * FROM users
```
you construct a table relation and convert it to sql:
```ruby
users = Arel::Table.new(:users)
query = users.project(Arel.sql('*'))
query.to_sql
```
### More Sophisticated Queries
Here is a whirlwind tour through the most common SQL operators. These will probably cover 80% of all interaction with the database.
First is the 'restriction' operator, `where`:
```ruby
users.where(users[:name].eq('amy'))
# => SELECT * FROM users WHERE users.name = 'amy'
```
What would, in SQL, be part of the `SELECT` clause is called in Arel a `projection`:
```ruby
users.project(users[:id])
# => SELECT users.id FROM users
```
Comparison operators `=`, `!=`, `<`, `>`, `<=`, `>=`, `IN`:
```ruby
users.where(users[:age].eq(10)).project(Arel.sql('*')) # => SELECT * FROM "users" WHERE "users"."age" = 10
users.where(users[:age].not_eq(10)).project(Arel.sql('*')) # => SELECT * FROM "users" WHERE "users"."age" != 10
users.where(users[:age].lt(10)).project(Arel.sql('*')) # => SELECT * FROM "users" WHERE "users"."age" < 10
users.where(users[:age].gt(10)).project(Arel.sql('*')) # => SELECT * FROM "users" WHERE "users"."age" > 10
users.where(users[:age].lteq(10)).project(Arel.sql('*')) # => SELECT * FROM "users" WHERE "users"."age" <= 10
users.where(users[:age].gteq(10)).project(Arel.sql('*')) # => SELECT * FROM "users" WHERE "users"."age" >= 10
users.where(users[:age].in([20, 16, 17])).project(Arel.sql('*')) # => SELECT * FROM "users" WHERE "users"."age" IN (20, 16, 17)
```
Joins resemble SQL strongly:
```ruby
users.join(photos).on(users[:id].eq(photos[:user_id]))
# => SELECT * FROM users INNER JOIN photos ON users.id = photos.user_id
```
Left Joins
```ruby
users.join(photos, Arel::Nodes::OuterJoin).on(users[:id].eq(photos[:user_id]))
# => SELECT FROM users LEFT OUTER JOIN photos ON users.id = photos.user_id
```
What are called `LIMIT` and `OFFSET` in SQL are called `take` and `skip` in Arel:
```ruby
users.take(5) # => SELECT * FROM users LIMIT 5
users.skip(4) # => SELECT * FROM users OFFSET 4
```
`GROUP BY` is called `group`:
```ruby
users.project(users[:name]).group(users[:name])
# => SELECT users.name FROM users GROUP BY users.name
```
The best property of arel is its "composability", or closure under all operations. For example, to restrict AND project, just "chain" the method invocations:
```ruby
users \
.where(users[:name].eq('amy')) \
.project(users[:id]) \
# => SELECT users.id FROM users WHERE users.name = 'amy'
```
All operators are chainable in this way, and they are chainable any number of times, in any order.
```ruby
users.where(users[:name].eq('bob')).where(users[:age].lt(25))
```
The `OR` operator works like this:
```ruby
users.where(users[:name].eq('bob').or(users[:age].lt(25)))
```
The `AND` operator behaves similarly.
Aggregate functions `AVG`, `SUM`, `COUNT`, `MIN`, `MAX`, `HAVING`:
```ruby
photos.group(photos[:user_id]).having(photos[:id].count.gt(5)) # => SELECT FROM photos GROUP BY photos.user_id HAVING COUNT(photos.id) > 5
users.project(users[:age].sum) # => SELECT SUM(users.age) FROM users
users.project(users[:age].average) # => SELECT AVG(users.age) FROM users
users.project(users[:age].maximum) # => SELECT MAX(users.age) FROM users
users.project(users[:age].minimum) # => SELECT MIN(users.age) FROM users
users.project(users[:age].count) # => SELECT COUNT(users.age) FROM users
```
Aliasing Aggregate Functions:
```ruby
users.project(users[:age].average.as("mean_age")) # => SELECT AVG(users.age) AS mean_age FROM users
```
### The Crazy Features
The examples above are fairly simple and other libraries match or come close to matching the expressiveness of Arel (e.g., `Sequel` in Ruby).
#### Inline math operations
Suppose we have a table `products` with prices in different currencies. And we have a table `currency_rates`, of constantly changing currency rates. In Arel:
```ruby
products = Arel::Table.new(:products)
# Attributes: [:id, :name, :price, :currency_id]
currency_rates = Arel::Table.new(:currency_rates)
# Attributes: [:from_id, :to_id, :date, :rate]
```
Now, to order products by price in user preferred currency simply call:
```ruby
products.
join(:currency_rates).on(products[:currency_id].eq(currency_rates[:from_id])).
where(currency_rates[:to_id].eq(user_preferred_currency), currency_rates[:date].eq(Date.today)).
order(products[:price] * currency_rates[:rate])
```
#### Complex Joins
Where Arel really shines is in its ability to handle complex joins and aggregations. As a first example, let's consider an "adjacency list", a tree represented in a table. Suppose we have a table `comments`, representing a threaded discussion:
```ruby
comments = Arel::Table.new(:comments)
```
And this table has the following attributes:
```ruby
# [:id, :body, :parent_id]
```
The `parent_id` column is a foreign key from the `comments` table to itself.
Joining a table to itself requires aliasing in SQL. This aliasing can be handled from Arel as below:
```ruby
replies = comments.alias
comments_with_replies = \
comments.join(replies).on(replies[:parent_id].eq(comments[:id])).where(comments[:id].eq(1))
# => SELECT * FROM comments INNER JOIN comments AS comments_2 WHERE comments_2.parent_id = comments.id AND comments.id = 1
```
This will return the reply for the first comment.
[Common Table Expresssions(CTE)](https://en.wikipedia.org/wiki/Common_table_expressions#Common_table_expression) support via:
Create a `CTE`
```ruby
cte_table = Arel::Table.new(:cte_table)
composed_cte = Arel::Nodes::As.new(cte_table, photos.where(photos[:created_at].gt(Date.current)))
```
Use the created `CTE`:
```ruby
users.
join(cte_table).on(users[:id].eq(cte_table[:user_id])).
project(users[:id], cte_table[:click].sum).
with(composed_cte)
# => WITH cte_table AS (SELECT FROM photos WHERE photos.created_at > '2014-05-02') SELECT users.id, SUM(cte_table.click) FROM users INNER JOIN cte_table ON users.id = cte_table.user_id
```
When your query is too complex for `Arel`, you can use `Arel::SqlLiteral`:
```ruby
photo_clicks = Arel::Nodes::SqlLiteral.new(<<-SQL
CASE WHEN condition1 THEN calculation1
WHEN condition2 THEN calculation2
WHEN condition3 THEN calculation3
ELSE default_calculation END
SQL
)
photos.project(photo_clicks.as("photo_clicks"))
# => SELECT CASE WHEN condition1 THEN calculation1
WHEN condition2 THEN calculation2
WHEN condition3 THEN calculation3
ELSE default_calculation END
FROM "photos"
```
### License
Arel is released under the [MIT License](http://opensource.org/licenses/MIT).
|