aboutsummaryrefslogtreecommitdiffstats
path: root/library/cryptojs/components/sha3.js
blob: 1504bfb31759b64c460bc70102211bf30e651de2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
(function (Math) {
    // Shortcuts
    var C = CryptoJS;
    var C_lib = C.lib;
    var WordArray = C_lib.WordArray;
    var Hasher = C_lib.Hasher;
    var C_x64 = C.x64;
    var X64Word = C_x64.Word;
    var C_algo = C.algo;

    // Constants tables
    var RHO_OFFSETS = [];
    var PI_INDEXES  = [];
    var ROUND_CONSTANTS = [];

    // Compute Constants
    (function () {
        // Compute rho offset constants
        var x = 1, y = 0;
        for (var t = 0; t < 24; t++) {
            RHO_OFFSETS[x + 5 * y] = ((t + 1) * (t + 2) / 2) % 64;

            var newX = y % 5;
            var newY = (2 * x + 3 * y) % 5;
            x = newX;
            y = newY;
        }

        // Compute pi index constants
        for (var x = 0; x < 5; x++) {
            for (var y = 0; y < 5; y++) {
                PI_INDEXES[x + 5 * y] = y + ((2 * x + 3 * y) % 5) * 5;
            }
        }

        // Compute round constants
        var LFSR = 0x01;
        for (var i = 0; i < 24; i++) {
            var roundConstantMsw = 0;
            var roundConstantLsw = 0;

            for (var j = 0; j < 7; j++) {
                if (LFSR & 0x01) {
                    var bitPosition = (1 << j) - 1;
                    if (bitPosition < 32) {
                        roundConstantLsw ^= 1 << bitPosition;
                    } else /* if (bitPosition >= 32) */ {
                        roundConstantMsw ^= 1 << (bitPosition - 32);
                    }
                }

                // Compute next LFSR
                if (LFSR & 0x80) {
                    // Primitive polynomial over GF(2): x^8 + x^6 + x^5 + x^4 + 1
                    LFSR = (LFSR << 1) ^ 0x71;
                } else {
                    LFSR <<= 1;
                }
            }

            ROUND_CONSTANTS[i] = X64Word.create(roundConstantMsw, roundConstantLsw);
        }
    }());

    // Reusable objects for temporary values
    var T = [];
    (function () {
        for (var i = 0; i < 25; i++) {
            T[i] = X64Word.create();
        }
    }());

    /**
     * SHA-3 hash algorithm.
     */
    var SHA3 = C_algo.SHA3 = Hasher.extend({
        /**
         * Configuration options.
         *
         * @property {number} outputLength
         *   The desired number of bits in the output hash.
         *   Only values permitted are: 224, 256, 384, 512.
         *   Default: 512
         */
        cfg: Hasher.cfg.extend({
            outputLength: 512
        }),

        _doReset: function () {
            var state = this._state = []
            for (var i = 0; i < 25; i++) {
                state[i] = new X64Word.init();
            }

            this.blockSize = (1600 - 2 * this.cfg.outputLength) / 32;
        },

        _doProcessBlock: function (M, offset) {
            // Shortcuts
            var state = this._state;
            var nBlockSizeLanes = this.blockSize / 2;

            // Absorb
            for (var i = 0; i < nBlockSizeLanes; i++) {
                // Shortcuts
                var M2i  = M[offset + 2 * i];
                var M2i1 = M[offset + 2 * i + 1];

                // Swap endian
                M2i = (
                    (((M2i << 8)  | (M2i >>> 24)) & 0x00ff00ff) |
                    (((M2i << 24) | (M2i >>> 8))  & 0xff00ff00)
                );
                M2i1 = (
                    (((M2i1 << 8)  | (M2i1 >>> 24)) & 0x00ff00ff) |
                    (((M2i1 << 24) | (M2i1 >>> 8))  & 0xff00ff00)
                );

                // Absorb message into state
                var lane = state[i];
                lane.high ^= M2i1;
                lane.low  ^= M2i;
            }

            // Rounds
            for (var round = 0; round < 24; round++) {
                // Theta
                for (var x = 0; x < 5; x++) {
                    // Mix column lanes
                    var tMsw = 0, tLsw = 0;
                    for (var y = 0; y < 5; y++) {
                        var lane = state[x + 5 * y];
                        tMsw ^= lane.high;
                        tLsw ^= lane.low;
                    }

                    // Temporary values
                    var Tx = T[x];
                    Tx.high = tMsw;
                    Tx.low  = tLsw;
                }
                for (var x = 0; x < 5; x++) {
                    // Shortcuts
                    var Tx4 = T[(x + 4) % 5];
                    var Tx1 = T[(x + 1) % 5];
                    var Tx1Msw = Tx1.high;
                    var Tx1Lsw = Tx1.low;

                    // Mix surrounding columns
                    var tMsw = Tx4.high ^ ((Tx1Msw << 1) | (Tx1Lsw >>> 31));
                    var tLsw = Tx4.low  ^ ((Tx1Lsw << 1) | (Tx1Msw >>> 31));
                    for (var y = 0; y < 5; y++) {
                        var lane = state[x + 5 * y];
                        lane.high ^= tMsw;
                        lane.low  ^= tLsw;
                    }
                }

                // Rho Pi
                for (var laneIndex = 1; laneIndex < 25; laneIndex++) {
                    // Shortcuts
                    var lane = state[laneIndex];
                    var laneMsw = lane.high;
                    var laneLsw = lane.low;
                    var rhoOffset = RHO_OFFSETS[laneIndex];

                    // Rotate lanes
                    if (rhoOffset < 32) {
                        var tMsw = (laneMsw << rhoOffset) | (laneLsw >>> (32 - rhoOffset));
                        var tLsw = (laneLsw << rhoOffset) | (laneMsw >>> (32 - rhoOffset));
                    } else /* if (rhoOffset >= 32) */ {
                        var tMsw = (laneLsw << (rhoOffset - 32)) | (laneMsw >>> (64 - rhoOffset));
                        var tLsw = (laneMsw << (rhoOffset - 32)) | (laneLsw >>> (64 - rhoOffset));
                    }

                    // Transpose lanes
                    var TPiLane = T[PI_INDEXES[laneIndex]];
                    TPiLane.high = tMsw;
                    TPiLane.low  = tLsw;
                }

                // Rho pi at x = y = 0
                var T0 = T[0];
                var state0 = state[0];
                T0.high = state0.high;
                T0.low  = state0.low;

                // Chi
                for (var x = 0; x < 5; x++) {
                    for (var y = 0; y < 5; y++) {
                        // Shortcuts
                        var laneIndex = x + 5 * y;
                        var lane = state[laneIndex];
                        var TLane = T[laneIndex];
                        var Tx1Lane = T[((x + 1) % 5) + 5 * y];
                        var Tx2Lane = T[((x + 2) % 5) + 5 * y];

                        // Mix rows
                        lane.high = TLane.high ^ (~Tx1Lane.high & Tx2Lane.high);
                        lane.low  = TLane.low  ^ (~Tx1Lane.low  & Tx2Lane.low);
                    }
                }

                // Iota
                var lane = state[0];
                var roundConstant = ROUND_CONSTANTS[round];
                lane.high ^= roundConstant.high;
                lane.low  ^= roundConstant.low;;
            }
        },

        _doFinalize: function () {
            // Shortcuts
            var data = this._data;
            var dataWords = data.words;
            var nBitsTotal = this._nDataBytes * 8;
            var nBitsLeft = data.sigBytes * 8;
            var blockSizeBits = this.blockSize * 32;

            // Add padding
            dataWords[nBitsLeft >>> 5] |= 0x1 << (24 - nBitsLeft % 32);
            dataWords[((Math.ceil((nBitsLeft + 1) / blockSizeBits) * blockSizeBits) >>> 5) - 1] |= 0x80;
            data.sigBytes = dataWords.length * 4;

            // Hash final blocks
            this._process();

            // Shortcuts
            var state = this._state;
            var outputLengthBytes = this.cfg.outputLength / 8;
            var outputLengthLanes = outputLengthBytes / 8;

            // Squeeze
            var hashWords = [];
            for (var i = 0; i < outputLengthLanes; i++) {
                // Shortcuts
                var lane = state[i];
                var laneMsw = lane.high;
                var laneLsw = lane.low;

                // Swap endian
                laneMsw = (
                    (((laneMsw << 8)  | (laneMsw >>> 24)) & 0x00ff00ff) |
                    (((laneMsw << 24) | (laneMsw >>> 8))  & 0xff00ff00)
                );
                laneLsw = (
                    (((laneLsw << 8)  | (laneLsw >>> 24)) & 0x00ff00ff) |
                    (((laneLsw << 24) | (laneLsw >>> 8))  & 0xff00ff00)
                );

                // Squeeze state to retrieve hash
                hashWords.push(laneLsw);
                hashWords.push(laneMsw);
            }

            // Return final computed hash
            return new WordArray.init(hashWords, outputLengthBytes);
        },

        clone: function () {
            var clone = Hasher.clone.call(this);

            var state = clone._state = this._state.slice(0);
            for (var i = 0; i < 25; i++) {
                state[i] = state[i].clone();
            }

            return clone;
        }
    });

    /**
     * Shortcut function to the hasher's object interface.
     *
     * @param {WordArray|string} message The message to hash.
     *
     * @return {WordArray} The hash.
     *
     * @static
     *
     * @example
     *
     *     var hash = CryptoJS.SHA3('message');
     *     var hash = CryptoJS.SHA3(wordArray);
     */
    C.SHA3 = Hasher._createHelper(SHA3);

    /**
     * Shortcut function to the HMAC's object interface.
     *
     * @param {WordArray|string} message The message to hash.
     * @param {WordArray|string} key The secret key.
     *
     * @return {WordArray} The HMAC.
     *
     * @static
     *
     * @example
     *
     *     var hmac = CryptoJS.HmacSHA3(message, key);
     */
    C.HmacSHA3 = Hasher._createHmacHelper(SHA3);
}(Math));