aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/WinVST/ToTape5/ToTape5Proc.cpp
blob: 4d2d5c7568cefb77d69fa9703fb5b75ad07e8471 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
/* ========================================
 *  ToTape5 - ToTape5.h
 *  Copyright (c) 2016 airwindows, All rights reserved
 * ======================================== */

#ifndef __ToTape5_H
#include "ToTape5.h"
#endif

void ToTape5::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) 
{
    float* in1  =  inputs[0];
    float* in2  =  inputs[1];
    float* out1 = outputs[0];
    float* out2 = outputs[1];

	double overallscale = 1.0;
	overallscale /= 44100.0;
	overallscale *= getSampleRate();
	
	double inputgain = pow(A+1.0,3);
	double outputgain = E;
	double wet = F;
	double dry = 1.0 - wet;
	double trim = 0.211324865405187117745425;
	double SoftenControl = pow(B,2);
	double tempRandy = 0.06 + (SoftenControl/10.0);
	double RollAmount = (1.0-(SoftenControl * 0.45))/overallscale;
	double HeadBumpControl = pow(C,2);
	int allpasstemp;
	int maxdelay = (int)(floor(((HeadBumpControl+0.3)*2.2)*overallscale));
	HeadBumpControl *= fabs(HeadBumpControl);
	double HeadBumpFreq = 0.044/overallscale;
	double iirAmount = 0.000001/overallscale;
	double altAmount = 1.0 - iirAmount;
	double iirHBoostAmount = 0.0001/overallscale;
	double altHBoostAmount = 1.0 - iirAmount;
	double depth = pow(D,2)*overallscale;
	double fluttertrim = 0.005/overallscale;
	double sweeptrim = (0.0006*depth)/overallscale;
	double offset;	
	double tupi = 3.141592653589793238 * 2.0;
	double newrate = 0.005/overallscale;
	double oldrate = 1.0-newrate;
	double flutterrandy;
	double randy;
	double invrandy;
	int count;
	
	double HighsSampleL = 0.0;
	double NonHighsSampleL = 0.0;
	double HeadBumpL = 0.0;
	double SubtractL;
	double bridgerectifierL;
	double tempSampleL;
	double drySampleL;

	double HighsSampleR = 0.0;
	double NonHighsSampleR = 0.0;
	double HeadBumpR = 0.0;
	double SubtractR;
	double bridgerectifierR;
	double tempSampleR;
	double drySampleR;
	
	float fpTemp;
	long double fpOld = 0.618033988749894848204586; //golden ratio!
	long double fpNew = 1.0 - fpOld;	
	long double inputSampleL;
	long double inputSampleR;
	
    
    while (--sampleFrames >= 0)
    {
		inputSampleL = *in1;
		inputSampleR = *in2;
		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
			static int noisesource = 0;
			//this declares a variable before anything else is compiled. It won't keep assigning
			//it to 0 for every sample, it's as if the declaration doesn't exist in this context,
			//but it lets me add this denormalization fix in a single place rather than updating
			//it in three different locations. The variable isn't thread-safe but this is only
			//a random seed and we can share it with whatever.
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleL = applyresidue;
		}
		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
			static int noisesource = 0;
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleR = applyresidue;
			//this denormalization routine produces a white noise at -300 dB which the noise
			//shaping will interact with to produce a bipolar output, but the noise is actually
			//all positive. That should stop any variables from going denormal, and the routine
			//only kicks in if digital black is input. As a final touch, if you save to 24-bit
			//the silence will return to being digital black again.
		}
		drySampleL = inputSampleL;
		drySampleR = inputSampleR;
		
		
		flutterrandy = (rand()/(double)RAND_MAX);
		randy = flutterrandy * tempRandy; //for soften
		invrandy = (1.0-randy);
		randy /= 2.0;
		//we've set up so that we dial in the amount of the alt sections (in pairs) with invrandy being the source section
		
		//now we've got a random flutter, so we're messing with the pitch before tape effects go on
		if (gcount < 0 || gcount > 300) {gcount = 300;}
		count = gcount;
		dL[count+301] = dL[count] = inputSampleL;
		dR[count+301] = dR[count] = inputSampleR;
		gcount--;
		//we will also keep the buffer going, even when not in use
		
		if (depth != 0.0) {
			offset = (1.0 + sin(sweep)) * depth;
			count += (int)floor(offset);
			
			bridgerectifierL = (dL[count] * (1-(offset-floor(offset))));
			bridgerectifierL += (dL[count+1] * (offset-floor(offset)));
			bridgerectifierL -= ((dL[count+2] * (offset-floor(offset)))*trim);
			
			bridgerectifierR = (dR[count] * (1-(offset-floor(offset))));
			bridgerectifierR += (dR[count+1] * (offset-floor(offset)));
			bridgerectifierR -= ((dR[count+2] * (offset-floor(offset)))*trim);
			
			rateof = (nextmax * newrate) + (rateof * oldrate);
			sweep += rateof * fluttertrim;
			sweep += sweep * sweeptrim;
			if (sweep >= tupi){sweep = 0.0; nextmax = 0.02 + (flutterrandy*0.98);}
			inputSampleL = bridgerectifierL;
			inputSampleR = bridgerectifierR;
			//apply to input signal only when flutter is present, interpolate samples
		}
		
		if (inputgain != 1.0) {
			inputSampleL *= inputgain;
			inputSampleR *= inputgain;
		}
		
		if (flip < 1 || flip > 3) flip = 1;
		switch (flip)
		{
			case 1:				
				iirMidRollerAL = (iirMidRollerAL * (1.0 - RollAmount)) + (inputSampleL * RollAmount);
				iirMidRollerAL = (invrandy * iirMidRollerAL) + (randy * iirMidRollerBL) + (randy * iirMidRollerCL);
				HighsSampleL = inputSampleL - iirMidRollerAL;
				NonHighsSampleL = iirMidRollerAL;
				
				iirHeadBumpAL += (inputSampleL * 0.05);
				iirHeadBumpAL -= (iirHeadBumpAL * iirHeadBumpAL * iirHeadBumpAL * HeadBumpFreq);
				iirHeadBumpAL = (invrandy * iirHeadBumpAL) + (randy * iirHeadBumpBL) + (randy * iirHeadBumpCL);

				iirMidRollerAR = (iirMidRollerAR * (1.0 - RollAmount)) + (inputSampleR * RollAmount);
				iirMidRollerAR = (invrandy * iirMidRollerAR) + (randy * iirMidRollerBR) + (randy * iirMidRollerCR);
				HighsSampleR = inputSampleR - iirMidRollerAR;
				NonHighsSampleR = iirMidRollerAR;
				
				iirHeadBumpAR += (inputSampleR * 0.05);
				iirHeadBumpAR -= (iirHeadBumpAR * iirHeadBumpAR * iirHeadBumpAR * HeadBumpFreq);
				iirHeadBumpAR = (invrandy * iirHeadBumpAR) + (randy * iirHeadBumpBR) + (randy * iirHeadBumpCR);
				break;
			case 2:
				iirMidRollerBL = (iirMidRollerBL * (1.0 - RollAmount)) + (inputSampleL * RollAmount);
				iirMidRollerBL = (randy * iirMidRollerAL) + (invrandy * iirMidRollerBL) + (randy * iirMidRollerCL);
				HighsSampleL = inputSampleL - iirMidRollerBL;
				NonHighsSampleL = iirMidRollerBL;
				
				iirHeadBumpBL += (inputSampleL * 0.05);
				iirHeadBumpBL -= (iirHeadBumpBL * iirHeadBumpBL * iirHeadBumpBL * HeadBumpFreq);
				iirHeadBumpBL = (randy * iirHeadBumpAL) + (invrandy * iirHeadBumpBL) + (randy * iirHeadBumpCL);

				iirMidRollerBR = (iirMidRollerBR * (1.0 - RollAmount)) + (inputSampleR * RollAmount);
				iirMidRollerBR = (randy * iirMidRollerAR) + (invrandy * iirMidRollerBR) + (randy * iirMidRollerCR);
				HighsSampleR = inputSampleR - iirMidRollerBR;
				NonHighsSampleR = iirMidRollerBR;
				
				iirHeadBumpBR += (inputSampleR * 0.05);
				iirHeadBumpBR -= (iirHeadBumpBR * iirHeadBumpBR * iirHeadBumpBR * HeadBumpFreq);
				iirHeadBumpBR = (randy * iirHeadBumpAR) + (invrandy * iirHeadBumpBR) + (randy * iirHeadBumpCR);
				break;
			case 3:
				iirMidRollerCL = (iirMidRollerCL * (1.0 - RollAmount)) + (inputSampleL * RollAmount);
				iirMidRollerCL = (randy * iirMidRollerAL) + (randy * iirMidRollerBL) + (invrandy * iirMidRollerCL);
				HighsSampleL = inputSampleL - iirMidRollerCL;
				NonHighsSampleL = iirMidRollerCL;
				
				iirHeadBumpCL += (inputSampleL * 0.05);
				iirHeadBumpCL -= (iirHeadBumpCL * iirHeadBumpCL * iirHeadBumpCL * HeadBumpFreq);
				iirHeadBumpCL = (randy * iirHeadBumpAL) + (randy * iirHeadBumpBL) + (invrandy * iirHeadBumpCL);

				iirMidRollerCR = (iirMidRollerCR * (1.0 - RollAmount)) + (inputSampleR * RollAmount);
				iirMidRollerCR = (randy * iirMidRollerAR) + (randy * iirMidRollerBR) + (invrandy * iirMidRollerCR);
				HighsSampleR = inputSampleR - iirMidRollerCR;
				NonHighsSampleR = iirMidRollerCR;
				
				iirHeadBumpCR += (inputSampleR * 0.05);
				iirHeadBumpCR -= (iirHeadBumpCR * iirHeadBumpCR * iirHeadBumpCR * HeadBumpFreq);
				iirHeadBumpCR = (randy * iirHeadBumpAR) + (randy * iirHeadBumpBR) + (invrandy * iirHeadBumpCR);
				break;
		}
		flip++; //increment the triplet counter
		
		SubtractL = HighsSampleL;		
		bridgerectifierL = fabs(SubtractL)*1.57079633;
		if (bridgerectifierL > 1.57079633) bridgerectifierL = 1.57079633;
		bridgerectifierL = 1-cos(bridgerectifierL);
		if (SubtractL > 0) SubtractL = bridgerectifierL;
		if (SubtractL < 0) SubtractL = -bridgerectifierL;
		inputSampleL -= SubtractL;

		SubtractR = HighsSampleR;		
		bridgerectifierR = fabs(SubtractR)*1.57079633;
		if (bridgerectifierR > 1.57079633) bridgerectifierR = 1.57079633;
		bridgerectifierR = 1-cos(bridgerectifierR);
		if (SubtractR > 0) SubtractR = bridgerectifierR;
		if (SubtractR < 0) SubtractR = -bridgerectifierR;
		inputSampleR -= SubtractR;
		//Soften works using the MidRoller stuff, defining a bright parallel channel that we apply negative Density
		//to, and then subtract from the main audio. That makes the 'highs channel subtract' hit only the loudest
		//transients, plus we are subtracting any artifacts we got from the negative Density.		
		
		bridgerectifierL = fabs(inputSampleL);
		if (bridgerectifierL > 1.57079633) bridgerectifierL = 1.57079633;
		bridgerectifierL = sin(bridgerectifierL);
		if (inputSampleL > 0) inputSampleL = bridgerectifierL;
		if (inputSampleL < 0) inputSampleL = -bridgerectifierL;

		bridgerectifierR = fabs(inputSampleR);
		if (bridgerectifierR > 1.57079633) bridgerectifierR = 1.57079633;
		bridgerectifierR = sin(bridgerectifierR);
		if (inputSampleR > 0) inputSampleR = bridgerectifierR;
		if (inputSampleR < 0) inputSampleR = -bridgerectifierR;
		//drive section: the tape sound includes a very gentle saturation curve, which is always an attenuation.
		//we cut back on highs before hitting this, and then we're going to subtract highs a second time after.
		
		HeadBumpL = iirHeadBumpAL + iirHeadBumpBL + iirHeadBumpCL;
		HeadBumpR = iirHeadBumpAR + iirHeadBumpBR + iirHeadBumpCR;
		//begin PhaseNudge
		allpasstemp = hcount - 1;
		if (allpasstemp < 0 || allpasstemp > maxdelay) {allpasstemp = maxdelay;}
		
		HeadBumpL -= eL[allpasstemp] * fpOld;
		eL[hcount] = HeadBumpL;
		inputSampleL *= fpOld;
		
		HeadBumpR -= eR[allpasstemp] * fpOld;
		eR[hcount] = HeadBumpR;
		inputSampleR *= fpOld;
		
		hcount--; if (hcount < 0 || hcount > maxdelay) {hcount = maxdelay;}
		HeadBumpL += (eL[hcount]);
		HeadBumpR += (eR[hcount]);
		//end PhaseNudge on head bump in lieu of delay. 
		SubtractL -= (HeadBumpL * (HeadBumpControl+iirMinHeadBumpL));
		SubtractR -= (HeadBumpR * (HeadBumpControl+iirMinHeadBumpR));
		//makes a second soften and a single head bump after saturation.
		//we are going to retain this, and then feed it into the highpass filter. That way, we can skip a subtract.
		//Head Bump retains a trace which is roughly as large as what the highpass will do.
		
		tempSampleL = inputSampleL;
		tempSampleR = inputSampleR;
		
		iirMinHeadBumpL = (iirMinHeadBumpL * altHBoostAmount) + (fabs(inputSampleL) * iirHBoostAmount);
		if (iirMinHeadBumpL > 0.01) iirMinHeadBumpL = 0.01;

		iirMinHeadBumpR = (iirMinHeadBumpR * altHBoostAmount) + (fabs(inputSampleR) * iirHBoostAmount);
		if (iirMinHeadBumpR > 0.01) iirMinHeadBumpR = 0.01;
		//we want this one rectified so that it's a relatively steady positive value. Boosts can cause it to be
		//greater than 1 so we clamp it in that case.
		
		iirSampleAL = (iirSampleAL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleAL; SubtractL += iirSampleAL;
		iirSampleBL = (iirSampleBL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleBL; SubtractL += iirSampleBL;
		iirSampleCL = (iirSampleCL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleCL; SubtractL += iirSampleCL;
		iirSampleDL = (iirSampleDL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleDL; SubtractL += iirSampleDL;
		iirSampleEL = (iirSampleEL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleEL; SubtractL += iirSampleEL;
		iirSampleFL = (iirSampleFL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleFL; SubtractL += iirSampleFL;
		iirSampleGL = (iirSampleGL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleGL; SubtractL += iirSampleGL;
		iirSampleHL = (iirSampleHL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleHL; SubtractL += iirSampleHL;
		iirSampleIL = (iirSampleIL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleIL; SubtractL += iirSampleIL;
		iirSampleJL = (iirSampleJL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleJL; SubtractL += iirSampleJL;
		iirSampleKL = (iirSampleKL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleKL; SubtractL += iirSampleKL;
		iirSampleLL = (iirSampleLL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleLL; SubtractL += iirSampleLL;
		iirSampleML = (iirSampleML * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleML; SubtractL += iirSampleML;
		iirSampleNL = (iirSampleNL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleNL; SubtractL += iirSampleNL;
		iirSampleOL = (iirSampleOL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleOL; SubtractL += iirSampleOL;
		iirSamplePL = (iirSamplePL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSamplePL; SubtractL += iirSamplePL;
		iirSampleQL = (iirSampleQL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleQL; SubtractL += iirSampleQL;
		iirSampleRL = (iirSampleRL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleRL; SubtractL += iirSampleRL;
		iirSampleSL = (iirSampleSL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleSL; SubtractL += iirSampleSL;
		iirSampleTL = (iirSampleTL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleTL; SubtractL += iirSampleTL;
		iirSampleUL = (iirSampleUL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleUL; SubtractL += iirSampleUL;
		iirSampleVL = (iirSampleVL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleVL; SubtractL += iirSampleVL;
		iirSampleWL = (iirSampleWL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleWL; SubtractL += iirSampleWL;
		iirSampleXL = (iirSampleXL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleXL; SubtractL += iirSampleXL;
		iirSampleYL = (iirSampleYL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleYL; SubtractL += iirSampleYL;
		iirSampleZL = (iirSampleZL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleZL; SubtractL += iirSampleZL;

		iirSampleAR = (iirSampleAR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleAR; SubtractR += iirSampleAR;
		iirSampleBR = (iirSampleBR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleBR; SubtractR += iirSampleBR;
		iirSampleCR = (iirSampleCR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleCR; SubtractR += iirSampleCR;
		iirSampleDR = (iirSampleDR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleDR; SubtractR += iirSampleDR;
		iirSampleER = (iirSampleER * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleER; SubtractR += iirSampleER;
		iirSampleFR = (iirSampleFR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleFR; SubtractR += iirSampleFR;
		iirSampleGR = (iirSampleGR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleGR; SubtractR += iirSampleGR;
		iirSampleHR = (iirSampleHR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleHR; SubtractR += iirSampleHR;
		iirSampleIR = (iirSampleIR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleIR; SubtractR += iirSampleIR;
		iirSampleJR = (iirSampleJR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleJR; SubtractR += iirSampleJR;
		iirSampleKR = (iirSampleKR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleKR; SubtractR += iirSampleKR;
		iirSampleLR = (iirSampleLR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleLR; SubtractR += iirSampleLR;
		iirSampleMR = (iirSampleMR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleMR; SubtractR += iirSampleMR;
		iirSampleNR = (iirSampleNR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleNR; SubtractR += iirSampleNR;
		iirSampleOR = (iirSampleOR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleOR; SubtractR += iirSampleOR;
		iirSamplePR = (iirSamplePR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSamplePR; SubtractR += iirSamplePR;
		iirSampleQR = (iirSampleQR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleQR; SubtractR += iirSampleQR;
		iirSampleRR = (iirSampleRR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleRR; SubtractR += iirSampleRR;
		iirSampleSR = (iirSampleSR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleSR; SubtractR += iirSampleSR;
		iirSampleTR = (iirSampleTR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleTR; SubtractR += iirSampleTR;
		iirSampleUR = (iirSampleUR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleUR; SubtractR += iirSampleUR;
		iirSampleVR = (iirSampleVR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleVR; SubtractR += iirSampleVR;
		iirSampleWR = (iirSampleWR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleWR; SubtractR += iirSampleWR;
		iirSampleXR = (iirSampleXR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleXR; SubtractR += iirSampleXR;
		iirSampleYR = (iirSampleYR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleYR; SubtractR += iirSampleYR;
		iirSampleZR = (iirSampleZR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleZR; SubtractR += iirSampleZR;
		//do the IIR on a dummy sample, and store up the correction in a variable at the same scale as the very low level
		//numbers being used. Don't keep doing it against the possibly high level signal number.
		//This has been known to add a resonant quality to the cutoff, which we're using on purpose.
		
		inputSampleL -= SubtractL;
		inputSampleR -= SubtractR;
		//apply stored up tiny corrections.
		
		if (outputgain != 1.0) {
			inputSampleL *= outputgain;
			inputSampleR *= outputgain;
		}
		
		if (wet !=1.0) {
			inputSampleL = (inputSampleL * wet) + (drySampleL * dry);
			inputSampleR = (inputSampleR * wet) + (drySampleR * dry);
		}
		
		//noise shaping to 32-bit floating point
		if (fpFlip) {
			fpTemp = inputSampleL;
			fpNShapeLA = (fpNShapeLA*fpOld)+((inputSampleL-fpTemp)*fpNew);
			inputSampleL += fpNShapeLA;
			fpTemp = inputSampleR;
			fpNShapeRA = (fpNShapeRA*fpOld)+((inputSampleR-fpTemp)*fpNew);
			inputSampleR += fpNShapeRA;
		}
		else {
			fpTemp = inputSampleL;
			fpNShapeLB = (fpNShapeLB*fpOld)+((inputSampleL-fpTemp)*fpNew);
			inputSampleL += fpNShapeLB;
			fpTemp = inputSampleR;
			fpNShapeRB = (fpNShapeRB*fpOld)+((inputSampleR-fpTemp)*fpNew);
			inputSampleR += fpNShapeRB;
		}
		fpFlip = !fpFlip;
		//end noise shaping on 32 bit output

		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}

void ToTape5::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) 
{
    double* in1  =  inputs[0];
    double* in2  =  inputs[1];
    double* out1 = outputs[0];
    double* out2 = outputs[1];

	double overallscale = 1.0;
	overallscale /= 44100.0;
	overallscale *= getSampleRate();
	
	double inputgain = pow(A+1.0,3);
	double outputgain = E;
	double wet = F;
	double dry = 1.0 - wet;
	double trim = 0.211324865405187117745425;
	double SoftenControl = pow(B,2);
	double tempRandy = 0.06 + (SoftenControl/10.0);
	double RollAmount = (1.0-(SoftenControl * 0.45))/overallscale;
	double HeadBumpControl = pow(C,2);
	int allpasstemp;
	int maxdelay = (int)(floor(((HeadBumpControl+0.3)*2.2)*overallscale));
	HeadBumpControl *= fabs(HeadBumpControl);
	double HeadBumpFreq = 0.044/overallscale;
	double iirAmount = 0.000001/overallscale;
	double altAmount = 1.0 - iirAmount;
	double iirHBoostAmount = 0.0001/overallscale;
	double altHBoostAmount = 1.0 - iirAmount;
	double depth = pow(D,2)*overallscale;
	double fluttertrim = 0.005/overallscale;
	double sweeptrim = (0.0006*depth)/overallscale;
	double offset;	
	double tupi = 3.141592653589793238 * 2.0;
	double newrate = 0.005/overallscale;
	double oldrate = 1.0-newrate;
	double flutterrandy;
	double randy;
	double invrandy;
	int count;
	
	double HighsSampleL = 0.0;
	double NonHighsSampleL = 0.0;
	double HeadBumpL = 0.0;
	double SubtractL;
	double bridgerectifierL;
	double tempSampleL;
	double drySampleL;
	
	double HighsSampleR = 0.0;
	double NonHighsSampleR = 0.0;
	double HeadBumpR = 0.0;
	double SubtractR;
	double bridgerectifierR;
	double tempSampleR;
	double drySampleR;
	
	double fpTemp; //this is different from singlereplacing
	long double fpOld = 0.618033988749894848204586; //golden ratio!
	long double fpNew = 1.0 - fpOld;
	long double inputSampleL;
	long double inputSampleR;

    while (--sampleFrames >= 0)
    {
		inputSampleL = *in1;
		inputSampleR = *in2;
		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
			static int noisesource = 0;
			//this declares a variable before anything else is compiled. It won't keep assigning
			//it to 0 for every sample, it's as if the declaration doesn't exist in this context,
			//but it lets me add this denormalization fix in a single place rather than updating
			//it in three different locations. The variable isn't thread-safe but this is only
			//a random seed and we can share it with whatever.
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleL = applyresidue;
		}
		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
			static int noisesource = 0;
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleR = applyresidue;
			//this denormalization routine produces a white noise at -300 dB which the noise
			//shaping will interact with to produce a bipolar output, but the noise is actually
			//all positive. That should stop any variables from going denormal, and the routine
			//only kicks in if digital black is input. As a final touch, if you save to 24-bit
			//the silence will return to being digital black again.
		}
		drySampleL = inputSampleL;
		drySampleR = inputSampleR;
		
		
		flutterrandy = (rand()/(double)RAND_MAX);
		randy = flutterrandy * tempRandy; //for soften
		invrandy = (1.0-randy);
		randy /= 2.0;
		//we've set up so that we dial in the amount of the alt sections (in pairs) with invrandy being the source section
		
		//now we've got a random flutter, so we're messing with the pitch before tape effects go on
		if (gcount < 0 || gcount > 300) {gcount = 300;}
		count = gcount;
		dL[count+301] = dL[count] = inputSampleL;
		dR[count+301] = dR[count] = inputSampleR;
		gcount--;
		//we will also keep the buffer going, even when not in use
		
		if (depth != 0.0) {
			offset = (1.0 + sin(sweep)) * depth;
			count += (int)floor(offset);
			
			bridgerectifierL = (dL[count] * (1-(offset-floor(offset))));
			bridgerectifierL += (dL[count+1] * (offset-floor(offset)));
			bridgerectifierL -= ((dL[count+2] * (offset-floor(offset)))*trim);
			
			bridgerectifierR = (dR[count] * (1-(offset-floor(offset))));
			bridgerectifierR += (dR[count+1] * (offset-floor(offset)));
			bridgerectifierR -= ((dR[count+2] * (offset-floor(offset)))*trim);
			
			rateof = (nextmax * newrate) + (rateof * oldrate);
			sweep += rateof * fluttertrim;
			sweep += sweep * sweeptrim;
			if (sweep >= tupi){sweep = 0.0; nextmax = 0.02 + (flutterrandy*0.98);}
			inputSampleL = bridgerectifierL;
			inputSampleR = bridgerectifierR;
			//apply to input signal only when flutter is present, interpolate samples
		}
		
		if (inputgain != 1.0) {
			inputSampleL *= inputgain;
			inputSampleR *= inputgain;
		}
		
		if (flip < 1 || flip > 3) flip = 1;
		switch (flip)
		{
			case 1:				
				iirMidRollerAL = (iirMidRollerAL * (1.0 - RollAmount)) + (inputSampleL * RollAmount);
				iirMidRollerAL = (invrandy * iirMidRollerAL) + (randy * iirMidRollerBL) + (randy * iirMidRollerCL);
				HighsSampleL = inputSampleL - iirMidRollerAL;
				NonHighsSampleL = iirMidRollerAL;
				
				iirHeadBumpAL += (inputSampleL * 0.05);
				iirHeadBumpAL -= (iirHeadBumpAL * iirHeadBumpAL * iirHeadBumpAL * HeadBumpFreq);
				iirHeadBumpAL = (invrandy * iirHeadBumpAL) + (randy * iirHeadBumpBL) + (randy * iirHeadBumpCL);
				
				iirMidRollerAR = (iirMidRollerAR * (1.0 - RollAmount)) + (inputSampleR * RollAmount);
				iirMidRollerAR = (invrandy * iirMidRollerAR) + (randy * iirMidRollerBR) + (randy * iirMidRollerCR);
				HighsSampleR = inputSampleR - iirMidRollerAR;
				NonHighsSampleR = iirMidRollerAR;
				
				iirHeadBumpAR += (inputSampleR * 0.05);
				iirHeadBumpAR -= (iirHeadBumpAR * iirHeadBumpAR * iirHeadBumpAR * HeadBumpFreq);
				iirHeadBumpAR = (invrandy * iirHeadBumpAR) + (randy * iirHeadBumpBR) + (randy * iirHeadBumpCR);
				break;
			case 2:
				iirMidRollerBL = (iirMidRollerBL * (1.0 - RollAmount)) + (inputSampleL * RollAmount);
				iirMidRollerBL = (randy * iirMidRollerAL) + (invrandy * iirMidRollerBL) + (randy * iirMidRollerCL);
				HighsSampleL = inputSampleL - iirMidRollerBL;
				NonHighsSampleL = iirMidRollerBL;
				
				iirHeadBumpBL += (inputSampleL * 0.05);
				iirHeadBumpBL -= (iirHeadBumpBL * iirHeadBumpBL * iirHeadBumpBL * HeadBumpFreq);
				iirHeadBumpBL = (randy * iirHeadBumpAL) + (invrandy * iirHeadBumpBL) + (randy * iirHeadBumpCL);
				
				iirMidRollerBR = (iirMidRollerBR * (1.0 - RollAmount)) + (inputSampleR * RollAmount);
				iirMidRollerBR = (randy * iirMidRollerAR) + (invrandy * iirMidRollerBR) + (randy * iirMidRollerCR);
				HighsSampleR = inputSampleR - iirMidRollerBR;
				NonHighsSampleR = iirMidRollerBR;
				
				iirHeadBumpBR += (inputSampleR * 0.05);
				iirHeadBumpBR -= (iirHeadBumpBR * iirHeadBumpBR * iirHeadBumpBR * HeadBumpFreq);
				iirHeadBumpBR = (randy * iirHeadBumpAR) + (invrandy * iirHeadBumpBR) + (randy * iirHeadBumpCR);
				break;
			case 3:
				iirMidRollerCL = (iirMidRollerCL * (1.0 - RollAmount)) + (inputSampleL * RollAmount);
				iirMidRollerCL = (randy * iirMidRollerAL) + (randy * iirMidRollerBL) + (invrandy * iirMidRollerCL);
				HighsSampleL = inputSampleL - iirMidRollerCL;
				NonHighsSampleL = iirMidRollerCL;
				
				iirHeadBumpCL += (inputSampleL * 0.05);
				iirHeadBumpCL -= (iirHeadBumpCL * iirHeadBumpCL * iirHeadBumpCL * HeadBumpFreq);
				iirHeadBumpCL = (randy * iirHeadBumpAL) + (randy * iirHeadBumpBL) + (invrandy * iirHeadBumpCL);
				
				iirMidRollerCR = (iirMidRollerCR * (1.0 - RollAmount)) + (inputSampleR * RollAmount);
				iirMidRollerCR = (randy * iirMidRollerAR) + (randy * iirMidRollerBR) + (invrandy * iirMidRollerCR);
				HighsSampleR = inputSampleR - iirMidRollerCR;
				NonHighsSampleR = iirMidRollerCR;
				
				iirHeadBumpCR += (inputSampleR * 0.05);
				iirHeadBumpCR -= (iirHeadBumpCR * iirHeadBumpCR * iirHeadBumpCR * HeadBumpFreq);
				iirHeadBumpCR = (randy * iirHeadBumpAR) + (randy * iirHeadBumpBR) + (invrandy * iirHeadBumpCR);
				break;
		}
		flip++; //increment the triplet counter
		
		SubtractL = HighsSampleL;		
		bridgerectifierL = fabs(SubtractL)*1.57079633;
		if (bridgerectifierL > 1.57079633) bridgerectifierL = 1.57079633;
		bridgerectifierL = 1-cos(bridgerectifierL);
		if (SubtractL > 0) SubtractL = bridgerectifierL;
		if (SubtractL < 0) SubtractL = -bridgerectifierL;
		inputSampleL -= SubtractL;
		
		SubtractR = HighsSampleR;		
		bridgerectifierR = fabs(SubtractR)*1.57079633;
		if (bridgerectifierR > 1.57079633) bridgerectifierR = 1.57079633;
		bridgerectifierR = 1-cos(bridgerectifierR);
		if (SubtractR > 0) SubtractR = bridgerectifierR;
		if (SubtractR < 0) SubtractR = -bridgerectifierR;
		inputSampleR -= SubtractR;
		//Soften works using the MidRoller stuff, defining a bright parallel channel that we apply negative Density
		//to, and then subtract from the main audio. That makes the 'highs channel subtract' hit only the loudest
		//transients, plus we are subtracting any artifacts we got from the negative Density.		
		
		bridgerectifierL = fabs(inputSampleL);
		if (bridgerectifierL > 1.57079633) bridgerectifierL = 1.57079633;
		bridgerectifierL = sin(bridgerectifierL);
		if (inputSampleL > 0) inputSampleL = bridgerectifierL;
		if (inputSampleL < 0) inputSampleL = -bridgerectifierL;
		
		bridgerectifierR = fabs(inputSampleR);
		if (bridgerectifierR > 1.57079633) bridgerectifierR = 1.57079633;
		bridgerectifierR = sin(bridgerectifierR);
		if (inputSampleR > 0) inputSampleR = bridgerectifierR;
		if (inputSampleR < 0) inputSampleR = -bridgerectifierR;
		//drive section: the tape sound includes a very gentle saturation curve, which is always an attenuation.
		//we cut back on highs before hitting this, and then we're going to subtract highs a second time after.
		
		HeadBumpL = iirHeadBumpAL + iirHeadBumpBL + iirHeadBumpCL;
		HeadBumpR = iirHeadBumpAR + iirHeadBumpBR + iirHeadBumpCR;
		//begin PhaseNudge
		allpasstemp = hcount - 1;
		if (allpasstemp < 0 || allpasstemp > maxdelay) {allpasstemp = maxdelay;}
		
		HeadBumpL -= eL[allpasstemp] * fpOld;
		eL[hcount] = HeadBumpL;
		inputSampleL *= fpOld;
		
		HeadBumpR -= eR[allpasstemp] * fpOld;
		eR[hcount] = HeadBumpR;
		inputSampleR *= fpOld;
		
		hcount--; if (hcount < 0 || hcount > maxdelay) {hcount = maxdelay;}
		HeadBumpL += (eL[hcount]);
		HeadBumpR += (eR[hcount]);
		//end PhaseNudge on head bump in lieu of delay. 
		SubtractL -= (HeadBumpL * (HeadBumpControl+iirMinHeadBumpL));
		SubtractR -= (HeadBumpR * (HeadBumpControl+iirMinHeadBumpR));
		//makes a second soften and a single head bump after saturation.
		//we are going to retain this, and then feed it into the highpass filter. That way, we can skip a subtract.
		//Head Bump retains a trace which is roughly as large as what the highpass will do.
		
		tempSampleL = inputSampleL;
		tempSampleR = inputSampleR;
		
		iirMinHeadBumpL = (iirMinHeadBumpL * altHBoostAmount) + (fabs(inputSampleL) * iirHBoostAmount);
		if (iirMinHeadBumpL > 0.01) iirMinHeadBumpL = 0.01;
		
		iirMinHeadBumpR = (iirMinHeadBumpR * altHBoostAmount) + (fabs(inputSampleR) * iirHBoostAmount);
		if (iirMinHeadBumpR > 0.01) iirMinHeadBumpR = 0.01;
		//we want this one rectified so that it's a relatively steady positive value. Boosts can cause it to be
		//greater than 1 so we clamp it in that case.
		
		iirSampleAL = (iirSampleAL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleAL; SubtractL += iirSampleAL;
		iirSampleBL = (iirSampleBL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleBL; SubtractL += iirSampleBL;
		iirSampleCL = (iirSampleCL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleCL; SubtractL += iirSampleCL;
		iirSampleDL = (iirSampleDL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleDL; SubtractL += iirSampleDL;
		iirSampleEL = (iirSampleEL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleEL; SubtractL += iirSampleEL;
		iirSampleFL = (iirSampleFL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleFL; SubtractL += iirSampleFL;
		iirSampleGL = (iirSampleGL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleGL; SubtractL += iirSampleGL;
		iirSampleHL = (iirSampleHL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleHL; SubtractL += iirSampleHL;
		iirSampleIL = (iirSampleIL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleIL; SubtractL += iirSampleIL;
		iirSampleJL = (iirSampleJL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleJL; SubtractL += iirSampleJL;
		iirSampleKL = (iirSampleKL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleKL; SubtractL += iirSampleKL;
		iirSampleLL = (iirSampleLL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleLL; SubtractL += iirSampleLL;
		iirSampleML = (iirSampleML * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleML; SubtractL += iirSampleML;
		iirSampleNL = (iirSampleNL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleNL; SubtractL += iirSampleNL;
		iirSampleOL = (iirSampleOL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleOL; SubtractL += iirSampleOL;
		iirSamplePL = (iirSamplePL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSamplePL; SubtractL += iirSamplePL;
		iirSampleQL = (iirSampleQL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleQL; SubtractL += iirSampleQL;
		iirSampleRL = (iirSampleRL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleRL; SubtractL += iirSampleRL;
		iirSampleSL = (iirSampleSL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleSL; SubtractL += iirSampleSL;
		iirSampleTL = (iirSampleTL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleTL; SubtractL += iirSampleTL;
		iirSampleUL = (iirSampleUL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleUL; SubtractL += iirSampleUL;
		iirSampleVL = (iirSampleVL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleVL; SubtractL += iirSampleVL;
		iirSampleWL = (iirSampleWL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleWL; SubtractL += iirSampleWL;
		iirSampleXL = (iirSampleXL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleXL; SubtractL += iirSampleXL;
		iirSampleYL = (iirSampleYL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleYL; SubtractL += iirSampleYL;
		iirSampleZL = (iirSampleZL * altAmount) + (tempSampleL * iirAmount); tempSampleL -= iirSampleZL; SubtractL += iirSampleZL;
		
		iirSampleAR = (iirSampleAR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleAR; SubtractR += iirSampleAR;
		iirSampleBR = (iirSampleBR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleBR; SubtractR += iirSampleBR;
		iirSampleCR = (iirSampleCR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleCR; SubtractR += iirSampleCR;
		iirSampleDR = (iirSampleDR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleDR; SubtractR += iirSampleDR;
		iirSampleER = (iirSampleER * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleER; SubtractR += iirSampleER;
		iirSampleFR = (iirSampleFR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleFR; SubtractR += iirSampleFR;
		iirSampleGR = (iirSampleGR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleGR; SubtractR += iirSampleGR;
		iirSampleHR = (iirSampleHR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleHR; SubtractR += iirSampleHR;
		iirSampleIR = (iirSampleIR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleIR; SubtractR += iirSampleIR;
		iirSampleJR = (iirSampleJR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleJR; SubtractR += iirSampleJR;
		iirSampleKR = (iirSampleKR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleKR; SubtractR += iirSampleKR;
		iirSampleLR = (iirSampleLR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleLR; SubtractR += iirSampleLR;
		iirSampleMR = (iirSampleMR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleMR; SubtractR += iirSampleMR;
		iirSampleNR = (iirSampleNR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleNR; SubtractR += iirSampleNR;
		iirSampleOR = (iirSampleOR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleOR; SubtractR += iirSampleOR;
		iirSamplePR = (iirSamplePR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSamplePR; SubtractR += iirSamplePR;
		iirSampleQR = (iirSampleQR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleQR; SubtractR += iirSampleQR;
		iirSampleRR = (iirSampleRR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleRR; SubtractR += iirSampleRR;
		iirSampleSR = (iirSampleSR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleSR; SubtractR += iirSampleSR;
		iirSampleTR = (iirSampleTR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleTR; SubtractR += iirSampleTR;
		iirSampleUR = (iirSampleUR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleUR; SubtractR += iirSampleUR;
		iirSampleVR = (iirSampleVR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleVR; SubtractR += iirSampleVR;
		iirSampleWR = (iirSampleWR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleWR; SubtractR += iirSampleWR;
		iirSampleXR = (iirSampleXR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleXR; SubtractR += iirSampleXR;
		iirSampleYR = (iirSampleYR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleYR; SubtractR += iirSampleYR;
		iirSampleZR = (iirSampleZR * altAmount) + (tempSampleR * iirAmount); tempSampleR -= iirSampleZR; SubtractR += iirSampleZR;
		//do the IIR on a dummy sample, and store up the correction in a variable at the same scale as the very low level
		//numbers being used. Don't keep doing it against the possibly high level signal number.
		//This has been known to add a resonant quality to the cutoff, which we're using on purpose.
		
		inputSampleL -= SubtractL;
		inputSampleR -= SubtractR;
		//apply stored up tiny corrections.
		
		if (outputgain != 1.0) {
			inputSampleL *= outputgain;
			inputSampleR *= outputgain;
		}
		
		if (wet !=1.0) {
			inputSampleL = (inputSampleL * wet) + (drySampleL * dry);
			inputSampleR = (inputSampleR * wet) + (drySampleR * dry);
		}
		
		//noise shaping to 64-bit floating point
		if (fpFlip) {
			fpTemp = inputSampleL;
			fpNShapeLA = (fpNShapeLA*fpOld)+((inputSampleL-fpTemp)*fpNew);
			inputSampleL += fpNShapeLA;
			fpTemp = inputSampleR;
			fpNShapeRA = (fpNShapeRA*fpOld)+((inputSampleR-fpTemp)*fpNew);
			inputSampleR += fpNShapeRA;
		}
		else {
			fpTemp = inputSampleL;
			fpNShapeLB = (fpNShapeLB*fpOld)+((inputSampleL-fpTemp)*fpNew);
			inputSampleL += fpNShapeLB;
			fpTemp = inputSampleR;
			fpNShapeRB = (fpNShapeRB*fpOld)+((inputSampleR-fpTemp)*fpNew);
			inputSampleR += fpNShapeRB;
		}
		fpFlip = !fpFlip;
		//end noise shaping on 64 bit output

		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}