aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/WinVST/Srsly/SrslyProc.cpp
blob: 12a1b30a65fafff038c208d76e35d1944ba7af78 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
/* ========================================
 *  Srsly - Srsly.h
 *  Copyright (c) 2016 airwindows, All rights reserved
 * ======================================== */

#ifndef __Srsly_H
#include "Srsly.h"
#endif

void Srsly::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) 
{
    float* in1  =  inputs[0];
    float* in2  =  inputs[1];
    float* out1 = outputs[0];
    float* out2 = outputs[1];

	double sampleRate = getSampleRate();
	if (sampleRate < 22000) sampleRate = 22000; //keep biquads in range
	long double tempSample;
	
	biquadM2[0] = 2000 / sampleRate; //up
	biquadM7[0] = 7000 / sampleRate; //down
	biquadM10[0] = 10000 / sampleRate; //down
	
	biquadL3[0] = 3000 / sampleRate; //up
	biquadL7[0] = 7000 / sampleRate; //way up
	biquadR3[0] = 3000 / sampleRate; //up
	biquadR7[0] = 7000 / sampleRate; //way up
	
	biquadS3[0] = 3000 / sampleRate; //up
	biquadS5[0] = 5000 / sampleRate; //way down
	
	double focusM = 15.0-(A*10.0);
	double focusS = 21.0-(B*15.0);
	double Q = D+0.25; //add Q control: from half to double intensity
    biquadM2[1] = focusM*0.25*Q; //Q, mid 2K boost is much broader
    biquadM7[1] = focusM*Q; //Q
    biquadM10[1] = focusM*Q; //Q
    biquadS3[1] = focusM*Q; //Q
    biquadS5[1] = focusM*Q; //Q
	
    biquadL3[1] = focusS*Q; //Q
    biquadL7[1] = focusS*Q; //Q
    biquadR3[1] = focusS*Q; //Q
    biquadR7[1] = focusS*Q; //Q
	
	double K = tan(M_PI * biquadM2[0]);
	double norm = 1.0 / (1.0 + K / biquadM2[1] + K * K);
	biquadM2[2] = K / biquadM2[1] * norm;
	biquadM2[4] = -biquadM2[2];
	biquadM2[5] = 2.0 * (K * K - 1.0) * norm;
	biquadM2[6] = (1.0 - K / biquadM2[1] + K * K) * norm;
	
	K = tan(M_PI * biquadM7[0]);
	norm = 1.0 / (1.0 + K / biquadM7[1] + K * K);
	biquadM7[2] = K / biquadM7[1] * norm;
	biquadM7[4] = -biquadM7[2];
	biquadM7[5] = 2.0 * (K * K - 1.0) * norm;
	biquadM7[6] = (1.0 - K / biquadM7[1] + K * K) * norm;
	
	K = tan(M_PI * biquadM10[0]);
	norm = 1.0 / (1.0 + K / biquadM10[1] + K * K);
	biquadM10[2] = K / biquadM10[1] * norm;
	biquadM10[4] = -biquadM10[2];
	biquadM10[5] = 2.0 * (K * K - 1.0) * norm;
	biquadM10[6] = (1.0 - K / biquadM10[1] + K * K) * norm;
	
	K = tan(M_PI * biquadL3[0]);
	norm = 1.0 / (1.0 + K / biquadL3[1] + K * K);
	biquadL3[2] = K / biquadL3[1] * norm;
	biquadL3[4] = -biquadL3[2];
	biquadL3[5] = 2.0 * (K * K - 1.0) * norm;
	biquadL3[6] = (1.0 - K / biquadL3[1] + K * K) * norm;
	
	K = tan(M_PI * biquadL7[0]);
	norm = 1.0 / (1.0 + K / biquadL7[1] + K * K);
	biquadL7[2] = K / biquadL7[1] * norm;
	biquadL7[4] = -biquadL7[2];
	biquadL7[5] = 2.0 * (K * K - 1.0) * norm;
	biquadL7[6] = (1.0 - K / biquadL7[1] + K * K) * norm;
	
	K = tan(M_PI * biquadR3[0]);
	norm = 1.0 / (1.0 + K / biquadR3[1] + K * K);
	biquadR3[2] = K / biquadR3[1] * norm;
	biquadR3[4] = -biquadR3[2];
	biquadR3[5] = 2.0 * (K * K - 1.0) * norm;
	biquadR3[6] = (1.0 - K / biquadR3[1] + K * K) * norm;
	
	K = tan(M_PI * biquadR7[0]);
	norm = 1.0 / (1.0 + K / biquadR7[1] + K * K);
	biquadR7[2] = K / biquadR7[1] * norm;
	biquadR7[4] = -biquadR7[2];
	biquadR7[5] = 2.0 * (K * K - 1.0) * norm;
	biquadR7[6] = (1.0 - K / biquadR7[1] + K * K) * norm;
	
	K = tan(M_PI * biquadS3[0]);
	norm = 1.0 / (1.0 + K / biquadS3[1] + K * K);
	biquadS3[2] = K / biquadS3[1] * norm;
	biquadS3[4] = -biquadS3[2];
	biquadS3[5] = 2.0 * (K * K - 1.0) * norm;
	biquadS3[6] = (1.0 - K / biquadS3[1] + K * K) * norm;
	
	K = tan(M_PI * biquadS5[0]);
	norm = 1.0 / (1.0 + K / biquadS5[1] + K * K);
	biquadS5[2] = K / biquadS5[1] * norm;
	biquadS5[4] = -biquadS5[2];
	biquadS5[5] = 2.0 * (K * K - 1.0) * norm;
	biquadS5[6] = (1.0 - K / biquadS5[1] + K * K) * norm;
	
	double depthM = pow(A,2)*2.0;; //proportion to mix in the filtered stuff
	double depthS = pow(B,2)*2.0;; //proportion to mix in the filtered stuff
	double level = C; //output pad
	double wet = E; //dry/wet
	
	//biquad contains these values:
	//[0] is frequency: 0.000001 to 0.499999 is near-zero to near-Nyquist
	//[1] is resonance, 0.7071 is Butterworth. Also can't be zero
	//[2] is a0 but you need distinct ones for additional biquad instances so it's here
	//[3] is a1 but you need distinct ones for additional biquad instances so it's here
	//[4] is a2 but you need distinct ones for additional biquad instances so it's here
	//[5] is b1 but you need distinct ones for additional biquad instances so it's here
	//[6] is b2 but you need distinct ones for additional biquad instances so it's here
	//[7] is LEFT stored delayed sample (freq and res are stored so you can move them sample by sample)
	//[8] is LEFT stored delayed sample (you have to include the coefficient making code if you do that)
	//[9] is RIGHT stored delayed sample (freq and res are stored so you can move them sample by sample)
	//[10] is RIGHT stored delayed sample (you have to include the coefficient making code if you do that)
	
    while (--sampleFrames >= 0)
    {
		long double inputSampleL = *in1;
		long double inputSampleR = *in2;
		if (fabs(inputSampleL)<1.18e-37) inputSampleL = fpd * 1.18e-37;
		if (fabs(inputSampleR)<1.18e-37) inputSampleR = fpd * 1.18e-37;
		long double drySampleL = inputSampleL;
		long double drySampleR = inputSampleR;
		
		inputSampleL = sin(inputSampleL);
		inputSampleR = sin(inputSampleR);
		//encode Console5: good cleanness
		
		long double mid = inputSampleL + inputSampleR;
		long double rawmid = mid * 0.5; //we'll use this to isolate L&R a little
		long double side = inputSampleL - inputSampleR;
		long double boostside = side * depthS;
		//assign mid and side.Between these sections, you can do mid/side processing
		
		tempSample = (mid * biquadM2[2]) + biquadM2[7];
		biquadM2[7] = (-tempSample * biquadM2[5]) + biquadM2[8];
		biquadM2[8] = (mid * biquadM2[4]) - (tempSample * biquadM2[6]);
		long double M2Sample = tempSample; //like mono AU, 7 and 8 store L channel
		
		tempSample = (mid * biquadM7[2]) + biquadM7[7];
		biquadM7[7] = (-tempSample * biquadM7[5]) + biquadM7[8];
		biquadM7[8] = (mid * biquadM7[4]) - (tempSample * biquadM7[6]);
		long double M7Sample = -tempSample*2.0; //like mono AU, 7 and 8 store L channel
		
		tempSample = (mid * biquadM10[2]) + biquadM10[7];
		biquadM10[7] = (-tempSample * biquadM10[5]) + biquadM10[8];
		biquadM10[8] = (mid * biquadM10[4]) - (tempSample * biquadM10[6]);
		long double M10Sample = -tempSample*2.0; //like mono AU, 7 and 8 store L channel
		//mid
		
		tempSample = (side * biquadS3[2]) + biquadS3[7];
		biquadS3[7] = (-tempSample * biquadS3[5]) + biquadS3[8];
		biquadS3[8] = (side * biquadS3[4]) - (tempSample * biquadS3[6]);
		long double S3Sample = tempSample*2.0; //like mono AU, 7 and 8 store L channel
		
		tempSample = (side * biquadS5[2]) + biquadS5[7];
		biquadS5[7] = (-tempSample * biquadS5[5]) + biquadS5[8];
		biquadS5[8] = (side * biquadS5[4]) - (tempSample * biquadS5[6]);
		long double S5Sample = -tempSample*5.0; //like mono AU, 7 and 8 store L channel
		
		mid = (M2Sample + M7Sample + M10Sample)*depthM;
		side = (S3Sample + S5Sample + boostside)*depthS;
		
		long double msOutSampleL = (mid+side)/2.0;
		long double msOutSampleR = (mid-side)/2.0;
		//unassign mid and side
		
		long double isoSampleL = inputSampleL-rawmid;
		long double isoSampleR = inputSampleR-rawmid; //trying to isolate L and R a little
		
		tempSample = (isoSampleL * biquadL3[2]) + biquadL3[7];
		biquadL3[7] = (-tempSample * biquadL3[5]) + biquadL3[8];
		biquadL3[8] = (isoSampleL * biquadL3[4]) - (tempSample * biquadL3[6]);
		long double L3Sample = tempSample; //like mono AU, 7 and 8 store L channel
		
		tempSample = (isoSampleR * biquadR3[2]) + biquadR3[9];
		biquadR3[9] = (-tempSample * biquadR3[5]) + biquadR3[10];
		biquadR3[10] = (isoSampleR * biquadR3[4]) - (tempSample * biquadR3[6]);
		long double R3Sample = tempSample; //note: 9 and 10 store the R channel
		
		tempSample = (isoSampleL * biquadL7[2]) + biquadL7[7];
		biquadL7[7] = (-tempSample * biquadL7[5]) + biquadL7[8];
		biquadL7[8] = (isoSampleL * biquadL7[4]) - (tempSample * biquadL7[6]);
		long double L7Sample = tempSample*3.0; //like mono AU, 7 and 8 store L channel
		
		tempSample = (isoSampleR * biquadR7[2]) + biquadR7[9];
		biquadR7[9] = (-tempSample * biquadR7[5]) + biquadR7[10];
		biquadR7[10] = (isoSampleR * biquadR7[4]) - (tempSample * biquadR7[6]);
		long double R7Sample = tempSample*3.0; //note: 9 and 10 store the R channel
		
		long double processingL = msOutSampleL + ((L3Sample + L7Sample)*depthS);
		long double processingR = msOutSampleR + ((R3Sample + R7Sample)*depthS);
		//done with making filters, now we apply them
		
		inputSampleL += processingL;
		inputSampleR += processingR;
		
		if (level < 1.0) {
			inputSampleL *= level;
			inputSampleR *= level;
		}
		
		if (inputSampleL > 1.0) inputSampleL = 1.0;
		if (inputSampleL < -1.0) inputSampleL = -1.0;
		if (inputSampleR > 1.0) inputSampleR = 1.0;
		if (inputSampleR < -1.0) inputSampleR = -1.0;
		//without this, you can get a NaN condition where it spits out DC offset at full blast!
		inputSampleL = asin(inputSampleL);
		inputSampleR = asin(inputSampleR);
		//amplitude aspect
		
		if (wet < 1.0) {
			inputSampleL = (inputSampleL * wet)+(drySampleL * (1.0-wet));
			inputSampleR = (inputSampleR * wet)+(drySampleR * (1.0-wet));
		}
		
		//begin 32 bit stereo floating point dither
		int expon; frexpf((float)inputSampleL, &expon);
		fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
		inputSampleL += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62));
		frexpf((float)inputSampleR, &expon);
		fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
		inputSampleR += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62));
		//end 32 bit stereo floating point dither
		
		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}

void Srsly::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) 
{
    double* in1  =  inputs[0];
    double* in2  =  inputs[1];
    double* out1 = outputs[0];
    double* out2 = outputs[1];

	double sampleRate = getSampleRate();
	if (sampleRate < 22000) sampleRate = 22000; //keep biquads in range
	long double tempSample;
	
	biquadM2[0] = 2000 / sampleRate; //up
	biquadM7[0] = 7000 / sampleRate; //down
	biquadM10[0] = 10000 / sampleRate; //down
	
	biquadL3[0] = 3000 / sampleRate; //up
	biquadL7[0] = 7000 / sampleRate; //way up
	biquadR3[0] = 3000 / sampleRate; //up
	biquadR7[0] = 7000 / sampleRate; //way up
	
	biquadS3[0] = 3000 / sampleRate; //up
	biquadS5[0] = 5000 / sampleRate; //way down
	
	double focusM = 15.0-(A*10.0);
	double focusS = 21.0-(B*15.0);
	double Q = D+0.25; //add Q control: from half to double intensity
    biquadM2[1] = focusM*0.25*Q; //Q, mid 2K boost is much broader
    biquadM7[1] = focusM*Q; //Q
    biquadM10[1] = focusM*Q; //Q
    biquadS3[1] = focusM*Q; //Q
    biquadS5[1] = focusM*Q; //Q
	
    biquadL3[1] = focusS*Q; //Q
    biquadL7[1] = focusS*Q; //Q
    biquadR3[1] = focusS*Q; //Q
    biquadR7[1] = focusS*Q; //Q
	
	double K = tan(M_PI * biquadM2[0]);
	double norm = 1.0 / (1.0 + K / biquadM2[1] + K * K);
	biquadM2[2] = K / biquadM2[1] * norm;
	biquadM2[4] = -biquadM2[2];
	biquadM2[5] = 2.0 * (K * K - 1.0) * norm;
	biquadM2[6] = (1.0 - K / biquadM2[1] + K * K) * norm;
	
	K = tan(M_PI * biquadM7[0]);
	norm = 1.0 / (1.0 + K / biquadM7[1] + K * K);
	biquadM7[2] = K / biquadM7[1] * norm;
	biquadM7[4] = -biquadM7[2];
	biquadM7[5] = 2.0 * (K * K - 1.0) * norm;
	biquadM7[6] = (1.0 - K / biquadM7[1] + K * K) * norm;
	
	K = tan(M_PI * biquadM10[0]);
	norm = 1.0 / (1.0 + K / biquadM10[1] + K * K);
	biquadM10[2] = K / biquadM10[1] * norm;
	biquadM10[4] = -biquadM10[2];
	biquadM10[5] = 2.0 * (K * K - 1.0) * norm;
	biquadM10[6] = (1.0 - K / biquadM10[1] + K * K) * norm;
	
	K = tan(M_PI * biquadL3[0]);
	norm = 1.0 / (1.0 + K / biquadL3[1] + K * K);
	biquadL3[2] = K / biquadL3[1] * norm;
	biquadL3[4] = -biquadL3[2];
	biquadL3[5] = 2.0 * (K * K - 1.0) * norm;
	biquadL3[6] = (1.0 - K / biquadL3[1] + K * K) * norm;
	
	K = tan(M_PI * biquadL7[0]);
	norm = 1.0 / (1.0 + K / biquadL7[1] + K * K);
	biquadL7[2] = K / biquadL7[1] * norm;
	biquadL7[4] = -biquadL7[2];
	biquadL7[5] = 2.0 * (K * K - 1.0) * norm;
	biquadL7[6] = (1.0 - K / biquadL7[1] + K * K) * norm;
	
	K = tan(M_PI * biquadR3[0]);
	norm = 1.0 / (1.0 + K / biquadR3[1] + K * K);
	biquadR3[2] = K / biquadR3[1] * norm;
	biquadR3[4] = -biquadR3[2];
	biquadR3[5] = 2.0 * (K * K - 1.0) * norm;
	biquadR3[6] = (1.0 - K / biquadR3[1] + K * K) * norm;
	
	K = tan(M_PI * biquadR7[0]);
	norm = 1.0 / (1.0 + K / biquadR7[1] + K * K);
	biquadR7[2] = K / biquadR7[1] * norm;
	biquadR7[4] = -biquadR7[2];
	biquadR7[5] = 2.0 * (K * K - 1.0) * norm;
	biquadR7[6] = (1.0 - K / biquadR7[1] + K * K) * norm;
	
	K = tan(M_PI * biquadS3[0]);
	norm = 1.0 / (1.0 + K / biquadS3[1] + K * K);
	biquadS3[2] = K / biquadS3[1] * norm;
	biquadS3[4] = -biquadS3[2];
	biquadS3[5] = 2.0 * (K * K - 1.0) * norm;
	biquadS3[6] = (1.0 - K / biquadS3[1] + K * K) * norm;
	
	K = tan(M_PI * biquadS5[0]);
	norm = 1.0 / (1.0 + K / biquadS5[1] + K * K);
	biquadS5[2] = K / biquadS5[1] * norm;
	biquadS5[4] = -biquadS5[2];
	biquadS5[5] = 2.0 * (K * K - 1.0) * norm;
	biquadS5[6] = (1.0 - K / biquadS5[1] + K * K) * norm;
	
	double depthM = pow(A,2)*2.0;; //proportion to mix in the filtered stuff
	double depthS = pow(B,2)*2.0;; //proportion to mix in the filtered stuff
	double level = C; //output pad
	double wet = E; //dry/wet
	
	//biquad contains these values:
	//[0] is frequency: 0.000001 to 0.499999 is near-zero to near-Nyquist
	//[1] is resonance, 0.7071 is Butterworth. Also can't be zero
	//[2] is a0 but you need distinct ones for additional biquad instances so it's here
	//[3] is a1 but you need distinct ones for additional biquad instances so it's here
	//[4] is a2 but you need distinct ones for additional biquad instances so it's here
	//[5] is b1 but you need distinct ones for additional biquad instances so it's here
	//[6] is b2 but you need distinct ones for additional biquad instances so it's here
	//[7] is LEFT stored delayed sample (freq and res are stored so you can move them sample by sample)
	//[8] is LEFT stored delayed sample (you have to include the coefficient making code if you do that)
	//[9] is RIGHT stored delayed sample (freq and res are stored so you can move them sample by sample)
	//[10] is RIGHT stored delayed sample (you have to include the coefficient making code if you do that)
	
    while (--sampleFrames >= 0)
    {
		long double inputSampleL = *in1;
		long double inputSampleR = *in2;
		if (fabs(inputSampleL)<1.18e-43) inputSampleL = fpd * 1.18e-43;
		if (fabs(inputSampleR)<1.18e-43) inputSampleR = fpd * 1.18e-43;
		long double drySampleL = inputSampleL;
		long double drySampleR = inputSampleR;

		inputSampleL = sin(inputSampleL);
		inputSampleR = sin(inputSampleR);
		//encode Console5: good cleanness
		
		long double mid = inputSampleL + inputSampleR;
		long double rawmid = mid * 0.5; //we'll use this to isolate L&R a little
		long double side = inputSampleL - inputSampleR;
		long double boostside = side * depthS;
		//assign mid and side.Between these sections, you can do mid/side processing
		
		tempSample = (mid * biquadM2[2]) + biquadM2[7];
		biquadM2[7] = (-tempSample * biquadM2[5]) + biquadM2[8];
		biquadM2[8] = (mid * biquadM2[4]) - (tempSample * biquadM2[6]);
		long double M2Sample = tempSample; //like mono AU, 7 and 8 store L channel
		
		tempSample = (mid * biquadM7[2]) + biquadM7[7];
		biquadM7[7] = (-tempSample * biquadM7[5]) + biquadM7[8];
		biquadM7[8] = (mid * biquadM7[4]) - (tempSample * biquadM7[6]);
		long double M7Sample = -tempSample*2.0; //like mono AU, 7 and 8 store L channel
		
		tempSample = (mid * biquadM10[2]) + biquadM10[7];
		biquadM10[7] = (-tempSample * biquadM10[5]) + biquadM10[8];
		biquadM10[8] = (mid * biquadM10[4]) - (tempSample * biquadM10[6]);
		long double M10Sample = -tempSample*2.0; //like mono AU, 7 and 8 store L channel
		//mid
		
		tempSample = (side * biquadS3[2]) + biquadS3[7];
		biquadS3[7] = (-tempSample * biquadS3[5]) + biquadS3[8];
		biquadS3[8] = (side * biquadS3[4]) - (tempSample * biquadS3[6]);
		long double S3Sample = tempSample*2.0; //like mono AU, 7 and 8 store L channel
		
		tempSample = (side * biquadS5[2]) + biquadS5[7];
		biquadS5[7] = (-tempSample * biquadS5[5]) + biquadS5[8];
		biquadS5[8] = (side * biquadS5[4]) - (tempSample * biquadS5[6]);
		long double S5Sample = -tempSample*5.0; //like mono AU, 7 and 8 store L channel
		
		mid = (M2Sample + M7Sample + M10Sample)*depthM;
		side = (S3Sample + S5Sample + boostside)*depthS;
		
		long double msOutSampleL = (mid+side)/2.0;
		long double msOutSampleR = (mid-side)/2.0;
		//unassign mid and side
		
		long double isoSampleL = inputSampleL-rawmid;
		long double isoSampleR = inputSampleR-rawmid; //trying to isolate L and R a little
		
		tempSample = (isoSampleL * biquadL3[2]) + biquadL3[7];
		biquadL3[7] = (-tempSample * biquadL3[5]) + biquadL3[8];
		biquadL3[8] = (isoSampleL * biquadL3[4]) - (tempSample * biquadL3[6]);
		long double L3Sample = tempSample; //like mono AU, 7 and 8 store L channel
		
		tempSample = (isoSampleR * biquadR3[2]) + biquadR3[9];
		biquadR3[9] = (-tempSample * biquadR3[5]) + biquadR3[10];
		biquadR3[10] = (isoSampleR * biquadR3[4]) - (tempSample * biquadR3[6]);
		long double R3Sample = tempSample; //note: 9 and 10 store the R channel
		
		tempSample = (isoSampleL * biquadL7[2]) + biquadL7[7];
		biquadL7[7] = (-tempSample * biquadL7[5]) + biquadL7[8];
		biquadL7[8] = (isoSampleL * biquadL7[4]) - (tempSample * biquadL7[6]);
		long double L7Sample = tempSample*3.0; //like mono AU, 7 and 8 store L channel
		
		tempSample = (isoSampleR * biquadR7[2]) + biquadR7[9];
		biquadR7[9] = (-tempSample * biquadR7[5]) + biquadR7[10];
		biquadR7[10] = (isoSampleR * biquadR7[4]) - (tempSample * biquadR7[6]);
		long double R7Sample = tempSample*3.0; //note: 9 and 10 store the R channel
		
		long double processingL = msOutSampleL + ((L3Sample + L7Sample)*depthS);
		long double processingR = msOutSampleR + ((R3Sample + R7Sample)*depthS);
		//done with making filters, now we apply them
		
		inputSampleL += processingL;
		inputSampleR += processingR;
		
		if (level < 1.0) {
			inputSampleL *= level;
			inputSampleR *= level;
		}
				
		if (inputSampleL > 1.0) inputSampleL = 1.0;
		if (inputSampleL < -1.0) inputSampleL = -1.0;
		if (inputSampleR > 1.0) inputSampleR = 1.0;
		if (inputSampleR < -1.0) inputSampleR = -1.0;
		//without this, you can get a NaN condition where it spits out DC offset at full blast!
		inputSampleL = asin(inputSampleL);
		inputSampleR = asin(inputSampleR);
		//amplitude aspect

		if (wet < 1.0) {
			inputSampleL = (inputSampleL * wet)+(drySampleL * (1.0-wet));
			inputSampleR = (inputSampleR * wet)+(drySampleR * (1.0-wet));
		}
		
		//begin 64 bit stereo floating point dither
		int expon; frexp((double)inputSampleL, &expon);
		fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
		inputSampleL += ((double(fpd)-uint32_t(0x7fffffff)) * 1.1e-44l * pow(2,expon+62));
		frexp((double)inputSampleR, &expon);
		fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
		inputSampleR += ((double(fpd)-uint32_t(0x7fffffff)) * 1.1e-44l * pow(2,expon+62));
		//end 64 bit stereo floating point dither
		
		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}