aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/WinVST/Golem/GolemProc.cpp
blob: 9235869e2ed32d610b9caaaba973cd5706cf7652 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
/* ========================================
 *  Golem - Golem.h
 *  Copyright (c) 2016 airwindows, All rights reserved
 * ======================================== */

#ifndef __Golem_H
#include "Golem.h"
#endif

void Golem::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) 
{
    float* in1  =  inputs[0];
    float* in2  =  inputs[1];
    float* out1 = outputs[0];
    float* out2 = outputs[1];

	float fpTemp;
	long double fpOld = 0.618033988749894848204586; //golden ratio!
	long double fpNew = 1.0 - fpOld;	
	int phase = (int)((C * 5.999)+1);
	double balance = ((A*2.0)-1.0) / 2.0;
	double gainL = 0.5 - balance;
	double gainR = 0.5 + balance;
	double range = 30.0;
	if (phase == 3) range = 700.0;
	if (phase == 4) range = 700.0;
	double offset = pow((B*2.0)-1.0,5) * range;
	if (phase > 4) offset = 0.0;
	if (phase > 5)
	{
		gainL = 0.5;
		gainR = 0.5;
	}
	int near = (int)floor(fabs(offset));
	double farLevel = fabs(offset) - near;
	int far = near + 1;
	double nearLevel = 1.0 - farLevel;
	
	long double inputSampleL;
	long double inputSampleR;
	
    while (--sampleFrames >= 0)
    {
		inputSampleL = *in1;
		inputSampleR = *in2;
		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
			static int noisesource = 0;
			//this declares a variable before anything else is compiled. It won't keep assigning
			//it to 0 for every sample, it's as if the declaration doesn't exist in this context,
			//but it lets me add this denormalization fix in a single place rather than updating
			//it in three different locations. The variable isn't thread-safe but this is only
			//a random seed and we can share it with whatever.
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleL = applyresidue;
		}
		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
			static int noisesource = 0;
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleR = applyresidue;
			//this denormalization routine produces a white noise at -300 dB which the noise
			//shaping will interact with to produce a bipolar output, but the noise is actually
			//all positive. That should stop any variables from going denormal, and the routine
			//only kicks in if digital black is input. As a final touch, if you save to 24-bit
			//the silence will return to being digital black again.
		}
		//assign working variables
		
		if (phase == 2) inputSampleL = -inputSampleL;
		if (phase == 4) inputSampleL = -inputSampleL;
		
		inputSampleL *= gainL;
		inputSampleR *= gainR;
		
		if (count < 1 || count > 2048) {count = 2048;}
		
		if (offset > 0)
		{
			p[count+2048] = p[count] = inputSampleL;
			inputSampleL = p[count+near]*nearLevel;
			inputSampleL += p[count+far]*farLevel;
			
			//consider adding third sample just to bring out superhighs subtly, like old interpolation hacks
			//or third and fifth samples, ditto
			
		}
		
		if (offset < 0)
		{
			p[count+2048] = p[count] = inputSampleR;
			inputSampleR = p[count+near]*nearLevel;
			inputSampleR += p[count+far]*farLevel;
		}
		
		count -= 1;
		
		inputSampleL = inputSampleL + inputSampleR;
		inputSampleR = inputSampleL;
		//the output is totally mono
		
		//noise shaping to 32-bit floating point
		if (flip) {
			fpTemp = inputSampleL;
			fpNShapeLA = (fpNShapeLA*fpOld)+((inputSampleL-fpTemp)*fpNew);
			inputSampleL += fpNShapeLA;
			fpTemp = inputSampleR;
			fpNShapeRA = (fpNShapeRA*fpOld)+((inputSampleR-fpTemp)*fpNew);
			inputSampleR += fpNShapeRA;
		}
		else {
			fpTemp = inputSampleL;
			fpNShapeLB = (fpNShapeLB*fpOld)+((inputSampleL-fpTemp)*fpNew);
			inputSampleL += fpNShapeLB;
			fpTemp = inputSampleR;
			fpNShapeRB = (fpNShapeRB*fpOld)+((inputSampleR-fpTemp)*fpNew);
			inputSampleR += fpNShapeRB;
		}
		flip = !flip;
		//end noise shaping on 32 bit output

		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}

void Golem::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) 
{
    double* in1  =  inputs[0];
    double* in2  =  inputs[1];
    double* out1 = outputs[0];
    double* out2 = outputs[1];

	double fpTemp;
	long double fpOld = 0.618033988749894848204586; //golden ratio!
	long double fpNew = 1.0 - fpOld;	
	int phase = (int)((C * 5.999)+1);
	double balance = ((A*2.0)-1.0) / 2.0;
	double gainL = 0.5 - balance;
	double gainR = 0.5 + balance;
	double range = 30.0;
	if (phase == 3) range = 700.0;
	if (phase == 4) range = 700.0;
	double offset = pow((B*2.0)-1.0,5) * range;
	if (phase > 4) offset = 0.0;
	if (phase > 5)
	{
		gainL = 0.5;
		gainR = 0.5;
	}
	int near = (int)floor(fabs(offset));
	double farLevel = fabs(offset) - near;
	int far = near + 1;
	double nearLevel = 1.0 - farLevel;
	
	long double inputSampleL;
	long double inputSampleR;
	
    while (--sampleFrames >= 0)
    {
		inputSampleL = *in1;
		inputSampleR = *in2;
		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
			static int noisesource = 0;
			//this declares a variable before anything else is compiled. It won't keep assigning
			//it to 0 for every sample, it's as if the declaration doesn't exist in this context,
			//but it lets me add this denormalization fix in a single place rather than updating
			//it in three different locations. The variable isn't thread-safe but this is only
			//a random seed and we can share it with whatever.
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleL = applyresidue;
		}
		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
			static int noisesource = 0;
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleR = applyresidue;
			//this denormalization routine produces a white noise at -300 dB which the noise
			//shaping will interact with to produce a bipolar output, but the noise is actually
			//all positive. That should stop any variables from going denormal, and the routine
			//only kicks in if digital black is input. As a final touch, if you save to 24-bit
			//the silence will return to being digital black again.
		}
		//assign working variables
		
		if (phase == 2) inputSampleL = -inputSampleL;
		if (phase == 4) inputSampleL = -inputSampleL;
		
		inputSampleL *= gainL;
		inputSampleR *= gainR;
		
		if (count < 1 || count > 2048) {count = 2048;}
		
		if (offset > 0)
		{
			p[count+2048] = p[count] = inputSampleL;
			inputSampleL = p[count+near]*nearLevel;
			inputSampleL += p[count+far]*farLevel;
			
			//consider adding third sample just to bring out superhighs subtly, like old interpolation hacks
			//or third and fifth samples, ditto
			
		}
		
		if (offset < 0)
		{
			p[count+2048] = p[count] = inputSampleR;
			inputSampleR = p[count+near]*nearLevel;
			inputSampleR += p[count+far]*farLevel;
		}
		
		count -= 1;
		
		inputSampleL = inputSampleL + inputSampleR;
		inputSampleR = inputSampleL;
		//the output is totally mono
		
		//noise shaping to 64-bit floating point
		if (flip) {
			fpTemp = inputSampleL;
			fpNShapeLA = (fpNShapeLA*fpOld)+((inputSampleL-fpTemp)*fpNew);
			inputSampleL += fpNShapeLA;
			fpTemp = inputSampleR;
			fpNShapeRA = (fpNShapeRA*fpOld)+((inputSampleR-fpTemp)*fpNew);
			inputSampleR += fpNShapeRA;
		}
		else {
			fpTemp = inputSampleL;
			fpNShapeLB = (fpNShapeLB*fpOld)+((inputSampleL-fpTemp)*fpNew);
			inputSampleL += fpNShapeLB;
			fpTemp = inputSampleR;
			fpNShapeRB = (fpNShapeRB*fpOld)+((inputSampleR-fpTemp)*fpNew);
			inputSampleR += fpNShapeRB;
		}
		flip = !flip;
		//end noise shaping on 64 bit output
		
		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}