aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/WinVST/Desk4/Desk4Proc.cpp
blob: 515436c06203cef1be72329f85d8d025a1c9f029 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
/* ========================================
 *  Desk4 - Desk4.h
 *  Copyright (c) 2016 airwindows, All rights reserved
 * ======================================== */

#ifndef __Desk4_H
#include "Desk4.h"
#endif

void Desk4::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) 
{
    float* in1  =  inputs[0];
    float* in2  =  inputs[1];
    float* out1 = outputs[0];
    float* out2 = outputs[1];

	double overallscale = 1.0;
	overallscale /= 44100.0;
	overallscale *= getSampleRate();
	float fpTemp;
	long double fpOld = 0.618033988749894848204586; //golden ratio!
	long double fpNew = 1.0 - fpOld;
	
	double gain = (pow(A,2)*10)+0.0001;
	double gaintrim = (pow(A,2)*2)+1.0;
	double slewgain = (pow(B,3)*40)+0.0001;	
	double prevslew = 0.105;
	double intensity = (pow(C,6)*15)+0.0001;
	double depthA = (pow(D,4)*940)+0.00001;
	int offsetA = (int)(depthA * overallscale);
	if (offsetA < 1) offsetA = 1;
	if (offsetA > 4880) offsetA = 4880;
	double balanceB = 0.0001;	
	slewgain *= overallscale;
	prevslew *= overallscale;
	balanceB /= overallscale;
	double outputgain = E;
	double wet = F;
	double dry = 1.0 - wet;
	
	double clampL;
	double clampR;
	double thicknessL;
	double thicknessR;
	double out;
	double balanceA = 1.0 - balanceB;
	double bridgerectifier;
	double slewL;
	double slewR;
	double combSampleL;
	double combSampleR;
	double drySampleL;
	double drySampleR;
	long double inputSampleL;
	long double inputSampleR;

    while (--sampleFrames >= 0)
    {
		inputSampleL = *in1;
		inputSampleR = *in2;
		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
			static int noisesource = 0;
			//this declares a variable before anything else is compiled. It won't keep assigning
			//it to 0 for every sample, it's as if the declaration doesn't exist in this context,
			//but it lets me add this denormalization fix in a single place rather than updating
			//it in three different locations. The variable isn't thread-safe but this is only
			//a random seed and we can share it with whatever.
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleL = applyresidue;
		}
		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
			static int noisesource = 0;
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleR = applyresidue;
			//this denormalization routine produces a white noise at -300 dB which the noise
			//shaping will interact with to produce a bipolar output, but the noise is actually
			//all positive. That should stop any variables from going denormal, and the routine
			//only kicks in if digital black is input. As a final touch, if you save to 24-bit
			//the silence will return to being digital black again.
		}
		drySampleL = inputSampleL;
		drySampleR = inputSampleR;

		if (gcount < 0 || gcount > 4900) {gcount = 4900;}
		
		dL[gcount+4900] = dL[gcount] = fabs(inputSampleL)*intensity;
		controlL += (dL[gcount] / offsetA);
		controlL -= (dL[gcount+offsetA] / offsetA);
		controlL -= 0.000001;
		clampL = 1;
		if (controlL < 0) {controlL = 0;}
		if (controlL > 1) {clampL -= (controlL - 1); controlL = 1;}
		if (clampL < 0.5) {clampL = 0.5;}
		
		dR[gcount+4900] = dR[gcount] = fabs(inputSampleR)*intensity;
		controlR += (dR[gcount] / offsetA);
		controlR -= (dR[gcount+offsetA] / offsetA);
		controlR -= 0.000001;
		clampR = 1;
		if (controlR < 0) {controlR = 0;}
		if (controlR > 1) {clampR -= (controlR - 1); controlR = 1;}
		if (clampR < 0.5) {clampR = 0.5;}
		
		
		gcount--;
		//control = 0 to 1
		thicknessL = ((1.0 - controlL) * 2.0) - 1.0;
		thicknessR = ((1.0 - controlR) * 2.0) - 1.0;
		
		out = fabs(thicknessL);		
		bridgerectifier = fabs(inputSampleL);
		if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
		//max value for sine function
		if (thicknessL > 0) bridgerectifier = sin(bridgerectifier);
		else bridgerectifier = 1-cos(bridgerectifier);
		//produce either boosted or starved version
		if (inputSampleL > 0) inputSampleL = (inputSampleL*(1-out))+(bridgerectifier*out);
		else inputSampleL = (inputSampleL*(1-out))-(bridgerectifier*out);
		//blend according to density control
		
		out = fabs(thicknessR);		
		bridgerectifier = fabs(inputSampleR);
		if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
		//max value for sine function
		if (thicknessR > 0) bridgerectifier = sin(bridgerectifier);
		else bridgerectifier = 1-cos(bridgerectifier);
		//produce either boosted or starved version
		if (inputSampleR > 0) inputSampleR = (inputSampleR*(1-out))+(bridgerectifier*out);
		else inputSampleR = (inputSampleR*(1-out))-(bridgerectifier*out);
		//blend according to density control
		
		inputSampleL *= clampL;
		inputSampleR *= clampR;
		
		slewL = inputSampleL - lastSampleL;
		lastSampleL = inputSampleL;
		//Set up direct reference for slew
		
		slewR = inputSampleR - lastSampleR;
		lastSampleR = inputSampleR;
		//Set up direct reference for slew
		
		bridgerectifier = fabs(slewL*slewgain);
		if (bridgerectifier > 1.57079633) bridgerectifier = 1.0;
		else bridgerectifier = sin(bridgerectifier);
		if (slewL > 0) slewL = bridgerectifier/slewgain;
		else slewL = -(bridgerectifier/slewgain);
		
		bridgerectifier = fabs(slewR*slewgain);
		if (bridgerectifier > 1.57079633) bridgerectifier = 1.0;
		else bridgerectifier = sin(bridgerectifier);
		if (slewR > 0) slewR = bridgerectifier/slewgain;
		else slewR = -(bridgerectifier/slewgain);
		
		inputSampleL = (lastOutSampleL*balanceA) + (lastSampleL*balanceB) + slewL;
		//go from last slewed, but include some raw values
		lastOutSampleL = inputSampleL;
		//Set up slewed reference
		
		inputSampleR = (lastOutSampleR*balanceA) + (lastSampleR*balanceB) + slewR;
		//go from last slewed, but include some raw values
		lastOutSampleR = inputSampleR;
		//Set up slewed reference
		
		combSampleL = fabs(drySampleL*lastSampleL);
		if (combSampleL > 1.0) combSampleL = 1.0;
		//bailout for very high input gains
		
		combSampleR = fabs(drySampleR*lastSampleR);
		if (combSampleR > 1.0) combSampleR = 1.0;
		//bailout for very high input gains
		
		inputSampleL -= (lastSlewL * combSampleL * prevslew);
		lastSlewL = slewL;
		//slew interaction with previous slew
		
		inputSampleR -= (lastSlewR * combSampleR * prevslew);
		lastSlewR = slewR;
		//slew interaction with previous slew
		
		inputSampleL *= gain;
		bridgerectifier = fabs(inputSampleL);
		if (bridgerectifier > 1.57079633) bridgerectifier = 1.0;
		else bridgerectifier = sin(bridgerectifier);
		if (inputSampleL > 0) inputSampleL = bridgerectifier;
		else inputSampleL = -bridgerectifier;
		//drive section
		inputSampleL /= gain;
		inputSampleL *= gaintrim;
		//end of Desk section
		
		inputSampleR *= gain;
		bridgerectifier = fabs(inputSampleR);
		if (bridgerectifier > 1.57079633) bridgerectifier = 1.0;
		else bridgerectifier = sin(bridgerectifier);
		if (inputSampleR > 0) inputSampleR = bridgerectifier;
		else inputSampleR = -bridgerectifier;
		//drive section
		inputSampleR /= gain;
		inputSampleR *= gaintrim;
		//end of Desk section
		
		if (outputgain != 1.0) {
			inputSampleL *= outputgain;
			inputSampleR *= outputgain;
		}
		
		if (wet !=1.0) {
			inputSampleL = (inputSampleL * wet) + (drySampleL * dry);
			inputSampleR = (inputSampleR * wet) + (drySampleR * dry);
		}
		
		
		//noise shaping to 32-bit floating point
		if (fpFlip) {
			fpTemp = inputSampleL;
			fpNShapeLA = (fpNShapeLA*fpOld)+((inputSampleL-fpTemp)*fpNew);
			inputSampleL += fpNShapeLA;
			fpTemp = inputSampleR;
			fpNShapeRA = (fpNShapeRA*fpOld)+((inputSampleR-fpTemp)*fpNew);
			inputSampleR += fpNShapeRA;
		}
		else {
			fpTemp = inputSampleL;
			fpNShapeLB = (fpNShapeLB*fpOld)+((inputSampleL-fpTemp)*fpNew);
			inputSampleL += fpNShapeLB;
			fpTemp = inputSampleR;
			fpNShapeRB = (fpNShapeRB*fpOld)+((inputSampleR-fpTemp)*fpNew);
			inputSampleR += fpNShapeRB;
		}
		fpFlip = !fpFlip;
		//end noise shaping on 32 bit output

		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}

void Desk4::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) 
{
    double* in1  =  inputs[0];
    double* in2  =  inputs[1];
    double* out1 = outputs[0];
    double* out2 = outputs[1];

	double overallscale = 1.0;
	overallscale /= 44100.0;
	overallscale *= getSampleRate();
	double fpTemp; //this is different from singlereplacing
	long double fpOld = 0.618033988749894848204586; //golden ratio!
	long double fpNew = 1.0 - fpOld;	

	double gain = (pow(A,2)*10)+0.0001;
	double gaintrim = (pow(A,2)*2)+1.0;
	double slewgain = (pow(B,3)*40)+0.0001;	
	double prevslew = 0.105;
	double intensity = (pow(C,6)*15)+0.0001;
	double depthA = (pow(D,4)*940)+0.00001;
	int offsetA = (int)(depthA * overallscale);
	if (offsetA < 1) offsetA = 1;
	if (offsetA > 4880) offsetA = 4880;
	double balanceB = 0.0001;	
	slewgain *= overallscale;
	prevslew *= overallscale;
	balanceB /= overallscale;
	double outputgain = E;
	double wet = F;
	double dry = 1.0 - wet;
	
	double clampL;
	double clampR;
	double thicknessL;
	double thicknessR;
	double out;
	double balanceA = 1.0 - balanceB;
	double bridgerectifier;
	double slewL;
	double slewR;
	double combSampleL;
	double combSampleR;
	double drySampleL;
	double drySampleR;
	long double inputSampleL;
	long double inputSampleR;

    while (--sampleFrames >= 0)
    {
		inputSampleL = *in1;
		inputSampleR = *in2;
		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
			static int noisesource = 0;
			//this declares a variable before anything else is compiled. It won't keep assigning
			//it to 0 for every sample, it's as if the declaration doesn't exist in this context,
			//but it lets me add this denormalization fix in a single place rather than updating
			//it in three different locations. The variable isn't thread-safe but this is only
			//a random seed and we can share it with whatever.
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleL = applyresidue;
		}
		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
			static int noisesource = 0;
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleR = applyresidue;
			//this denormalization routine produces a white noise at -300 dB which the noise
			//shaping will interact with to produce a bipolar output, but the noise is actually
			//all positive. That should stop any variables from going denormal, and the routine
			//only kicks in if digital black is input. As a final touch, if you save to 24-bit
			//the silence will return to being digital black again.
		}
		drySampleL = inputSampleL;
		drySampleR = inputSampleR;

		if (gcount < 0 || gcount > 4900) {gcount = 4900;}
		
		dL[gcount+4900] = dL[gcount] = fabs(inputSampleL)*intensity;
		controlL += (dL[gcount] / offsetA);
		controlL -= (dL[gcount+offsetA] / offsetA);
		controlL -= 0.000001;
		clampL = 1;
		if (controlL < 0) {controlL = 0;}
		if (controlL > 1) {clampL -= (controlL - 1); controlL = 1;}
		if (clampL < 0.5) {clampL = 0.5;}
		
		dR[gcount+4900] = dR[gcount] = fabs(inputSampleR)*intensity;
		controlR += (dR[gcount] / offsetA);
		controlR -= (dR[gcount+offsetA] / offsetA);
		controlR -= 0.000001;
		clampR = 1;
		if (controlR < 0) {controlR = 0;}
		if (controlR > 1) {clampR -= (controlR - 1); controlR = 1;}
		if (clampR < 0.5) {clampR = 0.5;}
		
		
		gcount--;
		//control = 0 to 1
		thicknessL = ((1.0 - controlL) * 2.0) - 1.0;
		thicknessR = ((1.0 - controlR) * 2.0) - 1.0;
		
		out = fabs(thicknessL);		
		bridgerectifier = fabs(inputSampleL);
		if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
		//max value for sine function
		if (thicknessL > 0) bridgerectifier = sin(bridgerectifier);
		else bridgerectifier = 1-cos(bridgerectifier);
		//produce either boosted or starved version
		if (inputSampleL > 0) inputSampleL = (inputSampleL*(1-out))+(bridgerectifier*out);
		else inputSampleL = (inputSampleL*(1-out))-(bridgerectifier*out);
		//blend according to density control

		out = fabs(thicknessR);		
		bridgerectifier = fabs(inputSampleR);
		if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
		//max value for sine function
		if (thicknessR > 0) bridgerectifier = sin(bridgerectifier);
		else bridgerectifier = 1-cos(bridgerectifier);
		//produce either boosted or starved version
		if (inputSampleR > 0) inputSampleR = (inputSampleR*(1-out))+(bridgerectifier*out);
		else inputSampleR = (inputSampleR*(1-out))-(bridgerectifier*out);
		//blend according to density control
		
		inputSampleL *= clampL;
		inputSampleR *= clampR;
		
		slewL = inputSampleL - lastSampleL;
		lastSampleL = inputSampleL;
		//Set up direct reference for slew

		slewR = inputSampleR - lastSampleR;
		lastSampleR = inputSampleR;
		//Set up direct reference for slew
		
		bridgerectifier = fabs(slewL*slewgain);
		if (bridgerectifier > 1.57079633) bridgerectifier = 1.0;
		else bridgerectifier = sin(bridgerectifier);
		if (slewL > 0) slewL = bridgerectifier/slewgain;
		else slewL = -(bridgerectifier/slewgain);
		
		bridgerectifier = fabs(slewR*slewgain);
		if (bridgerectifier > 1.57079633) bridgerectifier = 1.0;
		else bridgerectifier = sin(bridgerectifier);
		if (slewR > 0) slewR = bridgerectifier/slewgain;
		else slewR = -(bridgerectifier/slewgain);
		
		inputSampleL = (lastOutSampleL*balanceA) + (lastSampleL*balanceB) + slewL;
		//go from last slewed, but include some raw values
		lastOutSampleL = inputSampleL;
		//Set up slewed reference

		inputSampleR = (lastOutSampleR*balanceA) + (lastSampleR*balanceB) + slewR;
		//go from last slewed, but include some raw values
		lastOutSampleR = inputSampleR;
		//Set up slewed reference
		
		combSampleL = fabs(drySampleL*lastSampleL);
		if (combSampleL > 1.0) combSampleL = 1.0;
		//bailout for very high input gains

		combSampleR = fabs(drySampleR*lastSampleR);
		if (combSampleR > 1.0) combSampleR = 1.0;
		//bailout for very high input gains
		
		inputSampleL -= (lastSlewL * combSampleL * prevslew);
		lastSlewL = slewL;
		//slew interaction with previous slew

		inputSampleR -= (lastSlewR * combSampleR * prevslew);
		lastSlewR = slewR;
		//slew interaction with previous slew
		
		inputSampleL *= gain;
		bridgerectifier = fabs(inputSampleL);
		if (bridgerectifier > 1.57079633) bridgerectifier = 1.0;
		else bridgerectifier = sin(bridgerectifier);
		if (inputSampleL > 0) inputSampleL = bridgerectifier;
		else inputSampleL = -bridgerectifier;
		//drive section
		inputSampleL /= gain;
		inputSampleL *= gaintrim;
		//end of Desk section

		inputSampleR *= gain;
		bridgerectifier = fabs(inputSampleR);
		if (bridgerectifier > 1.57079633) bridgerectifier = 1.0;
		else bridgerectifier = sin(bridgerectifier);
		if (inputSampleR > 0) inputSampleR = bridgerectifier;
		else inputSampleR = -bridgerectifier;
		//drive section
		inputSampleR /= gain;
		inputSampleR *= gaintrim;
		//end of Desk section
		
		if (outputgain != 1.0) {
			inputSampleL *= outputgain;
			inputSampleR *= outputgain;
		}
		
		if (wet !=1.0) {
			inputSampleL = (inputSampleL * wet) + (drySampleL * dry);
			inputSampleR = (inputSampleR * wet) + (drySampleR * dry);
		}
		
		
		//noise shaping to 64-bit floating point
		if (fpFlip) {
			fpTemp = inputSampleL;
			fpNShapeLA = (fpNShapeLA*fpOld)+((inputSampleL-fpTemp)*fpNew);
			inputSampleL += fpNShapeLA;
			fpTemp = inputSampleR;
			fpNShapeRA = (fpNShapeRA*fpOld)+((inputSampleR-fpTemp)*fpNew);
			inputSampleR += fpNShapeRA;
		}
		else {
			fpTemp = inputSampleL;
			fpNShapeLB = (fpNShapeLB*fpOld)+((inputSampleL-fpTemp)*fpNew);
			inputSampleL += fpNShapeLB;
			fpTemp = inputSampleR;
			fpNShapeRB = (fpNShapeRB*fpOld)+((inputSampleR-fpTemp)*fpNew);
			inputSampleR += fpNShapeRB;
		}
		fpFlip = !fpFlip;
		//end noise shaping on 64 bit output

		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}