aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/WinVST/Coils/CoilsProc.cpp
blob: cc0456a026e77d0bf1a66671dd61bc04924016ad (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
/* ========================================
 *  Coils - Coils.h
 *  Copyright (c) 2016 airwindows, All rights reserved
 * ======================================== */

#ifndef __Coils_H
#include "Coils.h"
#endif

void Coils::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) 
{
    float* in1  =  inputs[0];
    float* in2  =  inputs[1];
    float* out1 = outputs[0];
    float* out2 = outputs[1];

	//[0] is frequency: 0.000001 to 0.499999 is near-zero to near-Nyquist
	//[1] is resonance, 0.7071 is Butterworth. Also can't be zero
	double boost = 1.0-pow(A,2);
	if (boost < 0.001) boost = 0.001; //there's a divide, we can't have this be zero
	figureL[0] = figureR[0] = 600.0/getSampleRate(); //fixed frequency, 600hz
	figureL[1] = figureR[1] = 0.023; //resonance
	double offset = B;
	double wet = C;
	double K = tan(M_PI * figureR[0]);
	double norm = 1.0 / (1.0 + K / figureR[1] + K * K);
	figureL[2] = figureR[2] = K / figureR[1] * norm;
	figureL[4] = figureR[4] = -figureR[2];
	figureL[5] = figureR[5] = 2.0 * (K * K - 1.0) * norm;
	figureL[6] = figureR[6] = (1.0 - K / figureR[1] + K * K) * norm;
	
    while (--sampleFrames >= 0)
    {
		long double inputSampleL = *in1;
		long double inputSampleR = *in2;
		if (fabs(inputSampleL)<1.18e-37) inputSampleL = fpd * 1.18e-37;
		if (fabs(inputSampleR)<1.18e-37) inputSampleR = fpd * 1.18e-37;
		long double drySampleL = inputSampleL;
		long double drySampleR = inputSampleR;
		
		//long double tempSample = (inputSample * figure[2]) + figure[7];
		//figure[7] = -(tempSample * figure[5]) + figure[8];
		//figure[8] = (inputSample * figure[4]) - (tempSample * figure[6]);
		//inputSample = tempSample + sin(drySample-tempSample);
		//or
		//inputSample = tempSample + ((sin(((drySample-tempSample)/boost)+offset)-offset)*boost);
		//
		//given a bandlimited inputSample, freq 600hz and Q of 0.023, this restores a lot of
		//the full frequencies but distorts like a real transformer. Purest case, and since
		//we are not using a high Q we can remove the extra sin/asin on the biquad.
		
				
		long double tempSample = (inputSampleL * figureL[2]) + figureL[7];
		figureL[7] = -(tempSample * figureL[5]) + figureL[8];
		figureL[8] = (inputSampleL * figureL[4]) - (tempSample * figureL[6]);
		inputSampleL = tempSample + ((sin(((drySampleL-tempSample)/boost)+offset)-offset)*boost);
		//given a bandlimited inputSample, freq 600hz and Q of 0.023, this restores a lot of
		//the full frequencies but distorts like a real transformer. Since
		//we are not using a high Q we can remove the extra sin/asin on the biquad.
		
		tempSample = (inputSampleR * figureR[2]) + figureR[7];
		figureR[7] = -(tempSample * figureR[5]) + figureR[8];
		figureR[8] = (inputSampleR * figureR[4]) - (tempSample * figureR[6]);
		inputSampleR = tempSample + ((sin(((drySampleR-tempSample)/boost)+offset)-offset)*boost);
		//given a bandlimited inputSample, freq 600hz and Q of 0.023, this restores a lot of
		//the full frequencies but distorts like a real transformer. Since
		//we are not using a high Q we can remove the extra sin/asin on the biquad.
		
		if (wet !=1.0) {
			inputSampleL = (inputSampleL * wet) + (drySampleL * (1.0-wet));
			inputSampleR = (inputSampleR * wet) + (drySampleR * (1.0-wet));
		}
		
		//begin 32 bit stereo floating point dither
		int expon; frexpf((float)inputSampleL, &expon);
		fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
		inputSampleL += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62));
		frexpf((float)inputSampleR, &expon);
		fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
		inputSampleR += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62));
		//end 32 bit stereo floating point dither
		
		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}

void Coils::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) 
{
    double* in1  =  inputs[0];
    double* in2  =  inputs[1];
    double* out1 = outputs[0];
    double* out2 = outputs[1];
	
	//[0] is frequency: 0.000001 to 0.499999 is near-zero to near-Nyquist
	//[1] is resonance, 0.7071 is Butterworth. Also can't be zero
	double boost = 1.0-pow(A,2);
	if (boost < 0.001) boost = 0.001; //there's a divide, we can't have this be zero
	figureL[0] = figureR[0] = 600.0/getSampleRate(); //fixed frequency, 600hz
	figureL[1] = figureR[1] = 0.023; //resonance
	double offset = B;
	double wet = C;
	double K = tan(M_PI * figureR[0]);
	double norm = 1.0 / (1.0 + K / figureR[1] + K * K);
	figureL[2] = figureR[2] = K / figureR[1] * norm;
	figureL[4] = figureR[4] = -figureR[2];
	figureL[5] = figureR[5] = 2.0 * (K * K - 1.0) * norm;
	figureL[6] = figureR[6] = (1.0 - K / figureR[1] + K * K) * norm;
	
    while (--sampleFrames >= 0)
    {
		long double inputSampleL = *in1;
		long double inputSampleR = *in2;
		if (fabs(inputSampleL)<1.18e-43) inputSampleL = fpd * 1.18e-43;
		if (fabs(inputSampleR)<1.18e-43) inputSampleR = fpd * 1.18e-43;
		long double drySampleL = inputSampleL;
		long double drySampleR = inputSampleR;
		
		//long double tempSample = (inputSample * figure[2]) + figure[7];
		//figure[7] = -(tempSample * figure[5]) + figure[8];
		//figure[8] = (inputSample * figure[4]) - (tempSample * figure[6]);
		//inputSample = tempSample + sin(drySample-tempSample);
		//or
		//inputSample = tempSample + ((sin(((drySample-tempSample)/boost)+offset)-offset)*boost);
		//
		//given a bandlimited inputSample, freq 600hz and Q of 0.023, this restores a lot of
		//the full frequencies but distorts like a real transformer. Purest case, and since
		//we are not using a high Q we can remove the extra sin/asin on the biquad.
		
		
		long double tempSample = (inputSampleL * figureL[2]) + figureL[7];
		figureL[7] = -(tempSample * figureL[5]) + figureL[8];
		figureL[8] = (inputSampleL * figureL[4]) - (tempSample * figureL[6]);
		inputSampleL = tempSample + ((sin(((drySampleL-tempSample)/boost)+offset)-offset)*boost);
		//given a bandlimited inputSample, freq 600hz and Q of 0.023, this restores a lot of
		//the full frequencies but distorts like a real transformer. Since
		//we are not using a high Q we can remove the extra sin/asin on the biquad.
		
		tempSample = (inputSampleR * figureR[2]) + figureR[7];
		figureR[7] = -(tempSample * figureR[5]) + figureR[8];
		figureR[8] = (inputSampleR * figureR[4]) - (tempSample * figureR[6]);
		inputSampleR = tempSample + ((sin(((drySampleR-tempSample)/boost)+offset)-offset)*boost);
		//given a bandlimited inputSample, freq 600hz and Q of 0.023, this restores a lot of
		//the full frequencies but distorts like a real transformer. Since
		//we are not using a high Q we can remove the extra sin/asin on the biquad.
		
		if (wet !=1.0) {
			inputSampleL = (inputSampleL * wet) + (drySampleL * (1.0-wet));
			inputSampleR = (inputSampleR * wet) + (drySampleR * (1.0-wet));
		}
		
		//begin 64 bit stereo floating point dither
		int expon; frexp((double)inputSampleL, &expon);
		fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
		inputSampleL += ((double(fpd)-uint32_t(0x7fffffff)) * 1.1e-44l * pow(2,expon+62));
		frexp((double)inputSampleR, &expon);
		fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
		inputSampleR += ((double(fpd)-uint32_t(0x7fffffff)) * 1.1e-44l * pow(2,expon+62));
		//end 64 bit stereo floating point dither
		
		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}