aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/MacVST/Pressure4/source/Pressure4Proc.cpp
blob: 7e285df60999d605cc38aca5e6cacb6cc3395da2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
/* ========================================
 *  Pressure4 - Pressure4.h
 *  Copyright (c) 2016 airwindows, All rights reserved
 * ======================================== */

#ifndef __Pressure4_H
#include "Pressure4.h"
#endif

void Pressure4::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) 
{
    float* inputL  =  inputs[0];
    float* inputR  =  inputs[1];
    float* outputL = outputs[0];
    float* outputR = outputs[1];

	double overallscale = 1.0;
	overallscale /= 44100.0;
	overallscale *= getSampleRate();
	double threshold = 1.0 - (A * 0.95);
	double muMakeupGain = 1.0 / threshold;
	//gain settings around threshold
	double release = pow((1.28-B),5)*32768.0;
	release /= overallscale;
	double fastest = sqrt(release);
	//speed settings around release
	long double bridgerectifier;
	double coefficient;
	double inputSense;
	double mewiness = (C*2.0)-1.0;
	double unmewiness;
	double outputGain = D;
	bool positivemu;
	if (mewiness >= 0)
	{
		positivemu = true;
		unmewiness = 1.0-mewiness;
	}
	else
	{
		positivemu = false;
		mewiness = -mewiness;
		unmewiness = 1.0-mewiness;
	}
	// µ µ µ µ µ µ µ µ µ µ µ µ is the kitten song o/~

	long double inputSampleL;
	long double inputSampleR;
	    
    while (--sampleFrames >= 0)
    {
		inputSampleL = *inputL;
		inputSampleR = *inputR;
		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
			static int noisesource = 0;
			//this declares a variable before anything else is compiled. It won't keep assigning
			//it to 0 for every sample, it's as if the declaration doesn't exist in this context,
			//but it lets me add this denormalization fix in a single place rather than updating
			//it in three different locations. The variable isn't thread-safe but this is only
			//a random seed and we can share it with whatever.
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleL = applyresidue;
		}
		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
			static int noisesource = 0;
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleR = applyresidue;
			//this denormalization routine produces a white noise at -300 dB which the noise
			//shaping will interact with to produce a bipolar output, but the noise is actually
			//all positive. That should stop any variables from going denormal, and the routine
			//only kicks in if digital black is input. As a final touch, if you save to 24-bit
			//the silence will return to being digital black again.
		}
		
		inputSampleL = inputSampleL * muMakeupGain;
		inputSampleR = inputSampleR * muMakeupGain;
		
		inputSense = fabs(inputSampleL);
		if (fabs(inputSampleR) > inputSense)
			inputSense = fabs(inputSampleR);
		//we will take the greater of either channel and just use that, then apply the result
		//to both stereo channels.
		
		if (flip)
		{
			if (inputSense > threshold)
			{
				muVary = threshold / inputSense;
				muAttack = sqrt(fabs(muSpeedA));
				muCoefficientA = muCoefficientA * (muAttack-1.0);
				if (muVary < threshold)
				{
					muCoefficientA = muCoefficientA + threshold;
				}
				else
				{
					muCoefficientA = muCoefficientA + muVary;
				}
				muCoefficientA = muCoefficientA / muAttack;
			}
			else
			{
				muCoefficientA = muCoefficientA * ((muSpeedA * muSpeedA)-1.0);
				muCoefficientA = muCoefficientA + 1.0;
				muCoefficientA = muCoefficientA / (muSpeedA * muSpeedA);
			}
			muNewSpeed = muSpeedA * (muSpeedA-1);
			muNewSpeed = muNewSpeed + fabs(inputSense*release)+fastest;
			muSpeedA = muNewSpeed / muSpeedA;
		}
		else
		{
			if (inputSense > threshold)
			{
				muVary = threshold / inputSense;
				muAttack = sqrt(fabs(muSpeedB));
				muCoefficientB = muCoefficientB * (muAttack-1);
				if (muVary < threshold)
				{
					muCoefficientB = muCoefficientB + threshold;
				}
				else
				{
					muCoefficientB = muCoefficientB + muVary;
				}
				muCoefficientB = muCoefficientB / muAttack;
			}
			else
			{
				muCoefficientB = muCoefficientB * ((muSpeedB * muSpeedB)-1.0);
				muCoefficientB = muCoefficientB + 1.0;
				muCoefficientB = muCoefficientB / (muSpeedB * muSpeedB);
			}
			muNewSpeed = muSpeedB * (muSpeedB-1);
			muNewSpeed = muNewSpeed + fabs(inputSense*release)+fastest;
			muSpeedB = muNewSpeed / muSpeedB;
		}
		//got coefficients, adjusted speeds
		
		if (flip)
		{
			if (positivemu) coefficient = pow(muCoefficientA,2);
			else coefficient = sqrt(muCoefficientA);
			coefficient = (coefficient*mewiness)+(muCoefficientA*unmewiness);
			inputSampleL *= coefficient;
			inputSampleR *= coefficient;
		}
		else
		{
			if (positivemu) coefficient = pow(muCoefficientB,2);
			else coefficient = sqrt(muCoefficientB);
			coefficient = (coefficient*mewiness)+(muCoefficientB*unmewiness);
			inputSampleL *= coefficient;
			inputSampleR *= coefficient;
		}
		//applied compression with vari-vari-µ-µ-µ-µ-µ-µ-is-the-kitten-song o/~
		//applied gain correction to control output level- tends to constrain sound rather than inflate it
		
		if (outputGain != 1.0) {
			inputSampleL *= outputGain;
			inputSampleR *= outputGain;
		}		

		bridgerectifier = fabs(inputSampleL);
		if (bridgerectifier > 1.57079633) bridgerectifier = 1.0;
		else bridgerectifier = sin(bridgerectifier);
		if (inputSampleL > 0){inputSampleL = bridgerectifier;}
		else {inputSampleL = -bridgerectifier;}
		//second stage of overdrive to prevent overs and allow bloody loud extremeness
		bridgerectifier = fabs(inputSampleR);
		if (bridgerectifier > 1.57079633) bridgerectifier = 1.0;
		else bridgerectifier = sin(bridgerectifier);
		if (inputSampleR > 0){inputSampleR = bridgerectifier;}
		else {inputSampleR = -bridgerectifier;}
		//second stage of overdrive to prevent overs and allow bloody loud extremeness
		
		//stereo 32 bit dither, made small and tidy.
		int expon; frexpf((float)inputSampleL, &expon);
		long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		inputSampleL += (dither-fpNShapeL); fpNShapeL = dither;
		frexpf((float)inputSampleR, &expon);
		dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		inputSampleR += (dither-fpNShapeR); fpNShapeR = dither;
		//end 32 bit dither
		
		*outputL = inputSampleL;
		*outputR = inputSampleR;
		
		*inputL++;
		*inputR++;
		*outputL++;
		*outputR++;
    }
}

void Pressure4::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) 
{
    double* inputL  =  inputs[0];
    double* inputR  =  inputs[1];
    double* outputL = outputs[0];
    double* outputR = outputs[1];

	double overallscale = 1.0;
	overallscale /= 44100.0;
	overallscale *= getSampleRate();
	double threshold = 1.0 - (A * 0.95);
	double muMakeupGain = 1.0 / threshold;
	//gain settings around threshold
	double release = pow((1.28-B),5)*32768.0;
	release /= overallscale;
	double fastest = sqrt(release);
	//speed settings around release
	long double bridgerectifier;
	double coefficient;
	double inputSense;
	double mewiness = (C*2.0)-1.0;
	double unmewiness;
	double outputGain = D;
	bool positivemu;
	if (mewiness >= 0)
	{
		positivemu = true;
		unmewiness = 1.0-mewiness;
	}
	else
	{
		positivemu = false;
		mewiness = -mewiness;
		unmewiness = 1.0-mewiness;
	}
	// µ µ µ µ µ µ µ µ µ µ µ µ is the kitten song o/~

	long double inputSampleL;
	long double inputSampleR;
 

    while (--sampleFrames >= 0)
    {
		inputSampleL = *inputL;
		inputSampleR = *inputR;
		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
			static int noisesource = 0;
			//this declares a variable before anything else is compiled. It won't keep assigning
			//it to 0 for every sample, it's as if the declaration doesn't exist in this context,
			//but it lets me add this denormalization fix in a single place rather than updating
			//it in three different locations. The variable isn't thread-safe but this is only
			//a random seed and we can share it with whatever.
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleL = applyresidue;
		}
		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
			static int noisesource = 0;
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleR = applyresidue;
			//this denormalization routine produces a white noise at -300 dB which the noise
			//shaping will interact with to produce a bipolar output, but the noise is actually
			//all positive. That should stop any variables from going denormal, and the routine
			//only kicks in if digital black is input. As a final touch, if you save to 24-bit
			//the silence will return to being digital black again.
		}
		
		inputSampleL = inputSampleL * muMakeupGain;
		inputSampleR = inputSampleR * muMakeupGain;
		
		inputSense = fabs(inputSampleL);
		if (fabs(inputSampleR) > inputSense)
			inputSense = fabs(inputSampleR);
		//we will take the greater of either channel and just use that, then apply the result
		//to both stereo channels.
		
		if (flip)
		{
			if (inputSense > threshold)
			{
				muVary = threshold / inputSense;
				muAttack = sqrt(fabs(muSpeedA));
				muCoefficientA = muCoefficientA * (muAttack-1.0);
				if (muVary < threshold)
				{
					muCoefficientA = muCoefficientA + threshold;
				}
				else
				{
					muCoefficientA = muCoefficientA + muVary;
				}
				muCoefficientA = muCoefficientA / muAttack;
			}
			else
			{
				muCoefficientA = muCoefficientA * ((muSpeedA * muSpeedA)-1.0);
				muCoefficientA = muCoefficientA + 1.0;
				muCoefficientA = muCoefficientA / (muSpeedA * muSpeedA);
			}
			muNewSpeed = muSpeedA * (muSpeedA-1);
			muNewSpeed = muNewSpeed + fabs(inputSense*release)+fastest;
			muSpeedA = muNewSpeed / muSpeedA;
		}
		else
		{
			if (inputSense > threshold)
			{
				muVary = threshold / inputSense;
				muAttack = sqrt(fabs(muSpeedB));
				muCoefficientB = muCoefficientB * (muAttack-1);
				if (muVary < threshold)
				{
					muCoefficientB = muCoefficientB + threshold;
				}
				else
				{
					muCoefficientB = muCoefficientB + muVary;
				}
				muCoefficientB = muCoefficientB / muAttack;
			}
			else
			{
				muCoefficientB = muCoefficientB * ((muSpeedB * muSpeedB)-1.0);
				muCoefficientB = muCoefficientB + 1.0;
				muCoefficientB = muCoefficientB / (muSpeedB * muSpeedB);
			}
			muNewSpeed = muSpeedB * (muSpeedB-1);
			muNewSpeed = muNewSpeed + fabs(inputSense*release)+fastest;
			muSpeedB = muNewSpeed / muSpeedB;
		}
		//got coefficients, adjusted speeds
		
		if (flip)
		{
			if (positivemu) coefficient = pow(muCoefficientA,2);
			else coefficient = sqrt(muCoefficientA);
			coefficient = (coefficient*mewiness)+(muCoefficientA*unmewiness);
			inputSampleL *= coefficient;
			inputSampleR *= coefficient;
		}
		else
		{
			if (positivemu) coefficient = pow(muCoefficientB,2);
			else coefficient = sqrt(muCoefficientB);
			coefficient = (coefficient*mewiness)+(muCoefficientB*unmewiness);
			inputSampleL *= coefficient;
			inputSampleR *= coefficient;
		}
		//applied compression with vari-vari-µ-µ-µ-µ-µ-µ-is-the-kitten-song o/~
		//applied gain correction to control output level- tends to constrain sound rather than inflate it
		
		if (outputGain != 1.0) {
			inputSampleL *= outputGain;
			inputSampleR *= outputGain;
		}		

		bridgerectifier = fabs(inputSampleL);
		if (bridgerectifier > 1.57079633) bridgerectifier = 1.0;
		else bridgerectifier = sin(bridgerectifier);
		if (inputSampleL > 0){inputSampleL = bridgerectifier;}
		else {inputSampleL = -bridgerectifier;}
		//second stage of overdrive to prevent overs and allow bloody loud extremeness
		bridgerectifier = fabs(inputSampleR);
		if (bridgerectifier > 1.57079633) bridgerectifier = 1.0;
		else bridgerectifier = sin(bridgerectifier);
		if (inputSampleR > 0){inputSampleR = bridgerectifier;}
		else {inputSampleR = -bridgerectifier;}
		//second stage of overdrive to prevent overs and allow bloody loud extremeness
		
		//stereo 64 bit dither, made small and tidy.
		int expon; frexp((double)inputSampleL, &expon);
		long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		dither /= 536870912.0; //needs this to scale to 64 bit zone
		inputSampleL += (dither-fpNShapeL); fpNShapeL = dither;
		frexp((double)inputSampleR, &expon);
		dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		dither /= 536870912.0; //needs this to scale to 64 bit zone
		inputSampleR += (dither-fpNShapeR); fpNShapeR = dither;
		//end 64 bit dither
		
		*outputL = inputSampleL;
		*outputR = inputSampleR;

		*inputL++;
		*inputR++;
		*outputL++;
		*outputR++;
    }
}