aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/MacAU/Righteous4/Righteous4.cpp
blob: be1a1f68d02c2c2d2b11c08acd004a75cdde0362 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
/*
*	File:		Righteous4.cpp
*	
*	Version:	1.0
* 
*	Created:	4/8/18
*	
*	Copyright:  Copyright � 2018 Airwindows, All Rights Reserved
* 
*	Disclaimer:	IMPORTANT:  This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in 
*				consideration of your agreement to the following terms, and your use, installation, modification 
*				or redistribution of this Apple software constitutes acceptance of these terms.  If you do 
*				not agree with these terms, please do not use, install, modify or redistribute this Apple 
*				software.
*
*				In consideration of your agreement to abide by the following terms, and subject to these terms, 
*				Apple grants you a personal, non-exclusive license, under Apple's copyrights in this 
*				original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the 
*				Apple Software, with or without modifications, in source and/or binary forms; provided that if you 
*				redistribute the Apple Software in its entirety and without modifications, you must retain this 
*				notice and the following text and disclaimers in all such redistributions of the Apple Software. 
*				Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to 
*				endorse or promote products derived from the Apple Software without specific prior written 
*				permission from Apple.  Except as expressly stated in this notice, no other rights or 
*				licenses, express or implied, are granted by Apple herein, including but not limited to any 
*				patent rights that may be infringed by your derivative works or by other works in which the 
*				Apple Software may be incorporated.
*
*				The Apple Software is provided by Apple on an "AS IS" basis.  APPLE MAKES NO WARRANTIES, EXPRESS OR 
*				IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY 
*				AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE 
*				OR IN COMBINATION WITH YOUR PRODUCTS.
*
*				IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL 
*				DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 
*				OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, 
*				REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER 
*				UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN 
*				IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/*=============================================================================
	Righteous4.cpp
	
=============================================================================*/
#include "Righteous4.h"


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

COMPONENT_ENTRY(Righteous4)


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	Righteous4::Righteous4
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Righteous4::Righteous4(AudioUnit component)
	: AUEffectBase(component)
{
	CreateElements();
	Globals()->UseIndexedParameters(kNumberOfParameters);
	SetParameter(kParam_One, kDefaultValue_ParamOne );
	SetParameter(kParam_Two, kDefaultValue_ParamTwo );
         
#if AU_DEBUG_DISPATCHER
	mDebugDispatcher = new AUDebugDispatcher (this);
#endif
	
}


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	Righteous4::GetParameterValueStrings
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult			Righteous4::GetParameterValueStrings(AudioUnitScope		inScope,
                                                                AudioUnitParameterID	inParameterID,
                                                                CFArrayRef *		outStrings)
{
    if ((inScope == kAudioUnitScope_Global) && (inParameterID == kParam_Two)) //ID must be actual name of parameter identifier, not number
	{
		if (outStrings == NULL) return noErr;
		CFStringRef strings [] =
		{
			kMenuItem_16bit,
			kMenuItem_24bit,
			kMenuItem_32bit,
		};
		*outStrings = CFArrayCreate (
									 NULL,
									 (const void **) strings,
									 (sizeof (strings) / sizeof (strings [0])),
									 NULL
									 );
		return noErr;
	}
    return kAudioUnitErr_InvalidProperty;
}



//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	Righteous4::GetParameterInfo
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult			Righteous4::GetParameterInfo(AudioUnitScope		inScope,
                                                        AudioUnitParameterID	inParameterID,
                                                        AudioUnitParameterInfo	&outParameterInfo )
{
	ComponentResult result = noErr;

	outParameterInfo.flags = 	kAudioUnitParameterFlag_IsWritable
						|		kAudioUnitParameterFlag_IsReadable;
    
    if (inScope == kAudioUnitScope_Global) {
        switch(inParameterID)
        {
			case kParam_One:
                AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false);
                outParameterInfo.unit = kAudioUnitParameterUnit_Decibels;
                outParameterInfo.minValue = -28.0;
                outParameterInfo.maxValue = -4.0;
                outParameterInfo.defaultValue = kDefaultValue_ParamOne;
                break;
			case kParam_Two:
                AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false);
				outParameterInfo.unit = kAudioUnitParameterUnit_Indexed;
				outParameterInfo.minValue = k16bit;
				outParameterInfo.maxValue = k32bit;
                outParameterInfo.defaultValue = kDefaultValue_ParamTwo;
                break;
			default:
                result = kAudioUnitErr_InvalidParameter;
                break;
		}
	} else {
        result = kAudioUnitErr_InvalidParameter;
    }
    


	return result;
}

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	Righteous4::GetPropertyInfo
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult			Righteous4::GetPropertyInfo (AudioUnitPropertyID	inID,
                                                        AudioUnitScope		inScope,
                                                        AudioUnitElement	inElement,
                                                        UInt32 &		outDataSize,
                                                        Boolean &		outWritable)
{
	return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable);
}

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	Righteous4::GetProperty
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult			Righteous4::GetProperty(	AudioUnitPropertyID inID,
                                                        AudioUnitScope 		inScope,
                                                        AudioUnitElement 	inElement,
                                                        void *			outData )
{
	return AUEffectBase::GetProperty (inID, inScope, inElement, outData);
}

//	Righteous4::Initialize
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult Righteous4::Initialize()
{
    ComponentResult result = AUEffectBase::Initialize();
    if (result == noErr)
        Reset(kAudioUnitScope_Global, 0);
    return result;
}

#pragma mark ____Righteous4EffectKernel



//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	Righteous4::Righteous4Kernel::Reset()
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
void		Righteous4::Righteous4Kernel::Reset()
{
	midSampleA = 0.0;
	midSampleB = 0.0;
	midSampleC = 0.0;
	midSampleD = 0.0;
	midSampleE = 0.0;
	midSampleF = 0.0;
	midSampleG = 0.0;
	midSampleH = 0.0;
	midSampleI = 0.0;
	midSampleJ = 0.0;
	midSampleK = 0.0;
	midSampleL = 0.0;
	midSampleM = 0.0;
	midSampleN = 0.0;
	midSampleO = 0.0;
	midSampleP = 0.0;
	midSampleQ = 0.0;
	midSampleR = 0.0;
	midSampleS = 0.0;
	midSampleT = 0.0;
	midSampleU = 0.0;
	midSampleV = 0.0;
	midSampleW = 0.0;
	midSampleX = 0.0;
	midSampleY = 0.0;
	midSampleZ = 0.0;
	
	byn[0] = 1000;
	byn[1] = 301;
	byn[2] = 176;
	byn[3] = 125;
	byn[4] = 97;
	byn[5] = 79;
	byn[6] = 67;
	byn[7] = 58;
	byn[8] = 51;
	byn[9] = 46;
	byn[10] = 1000;
	noiseShaping = 0.0;
	
	lastSample = 0.0;
	IIRsample = 0.0;
	gwPrev = 0.0;
	gwA = 0.0;
	gwB = 0.0;
	
	fpNShape = 0.0;
}

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	Righteous4::Righteous4Kernel::Process
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
void		Righteous4::Righteous4Kernel::Process(	const Float32 	*inSourceP,
                                                    Float32		 	*inDestP,
                                                    UInt32 			inFramesToProcess,
                                                    UInt32			inNumChannels, 
                                                    bool			&ioSilence )
{
	UInt32 nSampleFrames = inFramesToProcess;
	const Float32 *sourceP = inSourceP;
	Float32 *destP = inDestP;
	long double fpOld = 0.618033988749894848204586; //golden ratio!
	long double fpNew = 1.0 - fpOld;
	Float64 overallscale = 1.0;
	overallscale /= 44100.0;
	overallscale *= GetSampleRate();
	Float64 IIRscaleback = 0.0002597;//scaleback of harmonic avg
	IIRscaleback /= overallscale;
	IIRscaleback = 1.0 - IIRscaleback;
		
	Float64 target = GetParameter( kParam_One );
	target += 17; //gives us scaled distortion factor based on test conditions
	target = pow(10.0,target/20.0); //we will multiply and divide by this
	//ShortBuss section
	if (target == 0) target = 1; //insanity check
	
	int bitDepth = (int) GetParameter( kParam_Two ); // +1 for Reaper bug workaround
	
	Float64 fusswithscale = 149940.0; //corrected
	Float64 cutofffreq = 20; //was 46/2.0
	Float64 midAmount = (cutofffreq)/fusswithscale;
	midAmount /= overallscale;
	Float64 midaltAmount = 1.0 - midAmount;
	Float64 gwAfactor = 0.718;
	gwAfactor -= (overallscale*0.05); //0.2 at 176K, 0.1 at 88.2K, 0.05 at 44.1K
	//reduce slightly to not less than 0.5 to increase effect
	Float64 gwBfactor = 1.0 - gwAfactor;
	Float64 softness = 0.2135;
	Float64 hardness = 1.0 - softness;
	Float64 refclip = pow(10.0,-0.0058888);	
	
	while (nSampleFrames-- > 0) {
		long double inputSample = *sourceP;
		if (inputSample<1.2e-38 && -inputSample<1.2e-38) {
			static int noisesource = 0;
			//this declares a variable before anything else is compiled. It won't keep assigning
			//it to 0 for every sample, it's as if the declaration doesn't exist in this context,
			//but it lets me add this denormalization fix in a single place rather than updating
			//it in three different locations. The variable isn't thread-safe but this is only
			//a random seed and we can share it with whatever.
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSample = applyresidue;
			//this denormalization routine produces a white noise at -300 dB which the noise
			//shaping will interact with to produce a bipolar output, but the noise is actually
			//all positive. That should stop any variables from going denormal, and the routine
			//only kicks in if digital black is input. As a final touch, if you save to 24-bit
			//the silence will return to being digital black again.
		}
		Float64 drySample = inputSample;
		
		//begin the whole distortion dealiebop
		inputSample /= target;
		
		//running shortbuss on direct sample
		IIRsample *= IIRscaleback;
		Float64 secondharmonic = sin((2 * inputSample * inputSample) * IIRsample);
		//secondharmonic is calculated before IIRsample is updated, to delay reaction
		
		long double bridgerectifier = inputSample;
		if (bridgerectifier > 1.2533141373155) bridgerectifier = 1.2533141373155;
		if (bridgerectifier < -1.2533141373155) bridgerectifier = -1.2533141373155;
		//clip to 1.2533141373155 to reach maximum output
		bridgerectifier = sin(bridgerectifier * fabs(bridgerectifier)) / ((bridgerectifier == 0.0) ?1:fabs(bridgerectifier));
		if (inputSample > bridgerectifier) IIRsample += ((inputSample - bridgerectifier)*0.0009);
		if (inputSample < -bridgerectifier) IIRsample += ((inputSample + bridgerectifier)*0.0009);
		//manipulate IIRSample
		inputSample = bridgerectifier;
		//apply the distortion transform for reals. Has been converted back to -1/1
		
		//apply resonant highpass
		Float64 tempSample = inputSample;
		midSampleA = (midSampleA * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleA; Float64 correction = midSampleA;
		midSampleB = (midSampleB * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleB; correction += midSampleB;
		midSampleC = (midSampleC * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleC; correction += midSampleC;
		midSampleD = (midSampleD * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleD; correction += midSampleD;
		midSampleE = (midSampleE * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleE; correction += midSampleE;
		midSampleF = (midSampleF * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleF; correction += midSampleF;
		midSampleG = (midSampleG * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleG; correction += midSampleG;
		midSampleH = (midSampleH * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleH; correction += midSampleH;
		midSampleI = (midSampleI * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleI; correction += midSampleI;
		midSampleJ = (midSampleJ * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleJ; correction += midSampleJ;
		midSampleK = (midSampleK * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleK; correction += midSampleK;
		midSampleL = (midSampleL * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleL; correction += midSampleL;
		midSampleM = (midSampleM * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleM; correction += midSampleM;
		midSampleN = (midSampleN * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleN; correction += midSampleN;
		midSampleO = (midSampleO * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleO; correction += midSampleO;
		midSampleP = (midSampleP * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleP; correction += midSampleP;
		midSampleQ = (midSampleQ * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleQ; correction += midSampleQ;
		midSampleR = (midSampleR * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleR; correction += midSampleR;
		midSampleS = (midSampleS * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleS; correction += midSampleS;
		midSampleT = (midSampleT * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleT; correction += midSampleT;
		midSampleU = (midSampleU * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleU; correction += midSampleU;
		midSampleV = (midSampleV * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleV; correction += midSampleV;
		midSampleW = (midSampleW * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleW; correction += midSampleW;
		midSampleX = (midSampleX * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleX; correction += midSampleX;
		midSampleY = (midSampleY * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleY; correction += midSampleY;
		midSampleZ = (midSampleZ * midaltAmount) + (tempSample * midAmount); tempSample -= midSampleZ; correction += midSampleZ;
		correction *= fabs(secondharmonic);
		//scale it directly by second harmonic: DC block is now adding harmonics too
		correction -= secondharmonic*fpOld;
		//apply the shortbuss processing to output DCblock by subtracting it 
		//we are not a peak limiter! not using it to clip or nothin'
		//adding it inversely, it's the same as adding to inputsample only we are accumulating 'stuff' in 'correction'
		inputSample -= correction;
		if (inputSample < 0) inputSample = (inputSample * fpNew) - (sin(-inputSample)*fpOld);
		//lastly, class A clipping on the negative to combat the one-sidedness
		//uses bloom/antibloom to dial in previous unconstrained behavior
		//end the whole distortion dealiebop
		inputSample *= target;
		//begin simplified Groove Wear, outside the scaling
		//varies depending on what sample rate you're at:
		//high sample rate makes it more airy
		gwB = gwA; gwA = tempSample = (inputSample-gwPrev);
		tempSample *= gwAfactor;
		tempSample += (gwB * gwBfactor);
		correction = (inputSample-gwPrev) - tempSample;
		gwPrev = inputSample;		
		inputSample -= correction;		
		//simplified Groove Wear.
		
		//begin simplified ADClip
		drySample = inputSample;
		if (lastSample >= refclip)
		{
			if (inputSample < refclip)
			{
				lastSample = ((refclip*hardness) + (inputSample * softness));
			}
			else lastSample = refclip;
		}
		
		if (lastSample <= -refclip)
		{
			if (inputSample > -refclip)
			{
				lastSample = ((-refclip*hardness) + (inputSample * softness));
			}
			else lastSample = -refclip;
		}
		
		if (inputSample > refclip)
		{
			if (lastSample < refclip)
			{
				inputSample = ((refclip*hardness) + (lastSample * softness));
			}
			else inputSample = refclip;
		}
		
		if (inputSample < -refclip)
		{
			if (lastSample > -refclip)
			{
				inputSample = ((-refclip*hardness) + (lastSample * softness));
			}
			else inputSample = -refclip;
		}
		lastSample = drySample;
				
		//output dither section
		if (bitDepth == 3) {
			//32 bit dither, made small and tidy.
			int expon; frexpf((Float32)inputSample, &expon);
			long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
			inputSample += (dither-fpNShape); fpNShape = dither;
			//end 32 bit dither
		} else {
			//entire Naturalize section used when not on 32 bit out
			
			inputSample -= noiseShaping;
			if (bitDepth == 2) inputSample *= 8388608.0; //go to dither at 24 bit
			if (bitDepth == 1) inputSample *= 32768.0; //go to dither at 16 bit
			
			Float64 benfordize = floor(inputSample);
			while (benfordize >= 1.0) {benfordize /= 10;}
			if (benfordize < 1.0) {benfordize *= 10;}
			if (benfordize < 1.0) {benfordize *= 10;}
			if (benfordize < 1.0) {benfordize *= 10;}
			if (benfordize < 1.0) {benfordize *= 10;}
			if (benfordize < 1.0) {benfordize *= 10;}
			int hotbinA = floor(benfordize);
			//hotbin becomes the Benford bin value for this number floored
			Float64 totalA = 0;
			if ((hotbinA > 0) && (hotbinA < 10))
			{
				byn[hotbinA] += 1;
				totalA += (301-byn[1]);
				totalA += (176-byn[2]);
				totalA += (125-byn[3]);
				totalA += (97-byn[4]);
				totalA += (79-byn[5]);
				totalA += (67-byn[6]);
				totalA += (58-byn[7]);
				totalA += (51-byn[8]);
				totalA += (46-byn[9]);
				byn[hotbinA] -= 1;
			} else {hotbinA = 10;}
			//produce total number- smaller is closer to Benford real
			
			benfordize = ceil(inputSample);
			while (benfordize >= 1.0) {benfordize /= 10;}
			if (benfordize < 1.0) {benfordize *= 10;}
			if (benfordize < 1.0) {benfordize *= 10;}
			if (benfordize < 1.0) {benfordize *= 10;}
			if (benfordize < 1.0) {benfordize *= 10;}
			if (benfordize < 1.0) {benfordize *= 10;}
			int hotbinB = floor(benfordize);
			//hotbin becomes the Benford bin value for this number ceiled
			Float64 totalB = 0;
			if ((hotbinB > 0) && (hotbinB < 10))
			{
				byn[hotbinB] += 1;
				totalB += (301-byn[1]);
				totalB += (176-byn[2]);
				totalB += (125-byn[3]);
				totalB += (97-byn[4]);
				totalB += (79-byn[5]);
				totalB += (67-byn[6]);
				totalB += (58-byn[7]);
				totalB += (51-byn[8]);
				totalB += (46-byn[9]);
				byn[hotbinB] -= 1;
			} else {hotbinB = 10;}
			//produce total number- smaller is closer to Benford real
			
			if (totalA < totalB)
			{
				byn[hotbinA] += 1;
				inputSample = floor(inputSample);
			}
			else
			{
				byn[hotbinB] += 1;
				inputSample = ceil(inputSample);
			}
			//assign the relevant one to the delay line
			//and floor/ceil signal accordingly
			
			totalA = byn[1] + byn[2] + byn[3] + byn[4] + byn[5] + byn[6] + byn[7] + byn[8] + byn[9];
			totalA /= 1000;
			if (totalA = 0) totalA = 1;
			byn[1] /= totalA;
			byn[2] /= totalA;
			byn[3] /= totalA;
			byn[4] /= totalA;
			byn[5] /= totalA;
			byn[6] /= totalA;
			byn[7] /= totalA;
			byn[8] /= totalA;
			byn[9] /= totalA;
			byn[10] /= 2; //catchall for garbage data
			
			if (bitDepth == 2) inputSample /= 8388608.0;
			if (bitDepth == 1) inputSample /= 32768.0;
			noiseShaping += inputSample - drySample;
		}
		
		if (inputSample > refclip) inputSample = refclip;
		if (inputSample < -refclip) inputSample = -refclip;
		//iron bar prohibits any overs
		
		*destP = inputSample;
		
		sourceP += inNumChannels; destP += inNumChannels;
	}
}