aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/MacAU/Crystal/Crystal.cpp
blob: f57a72e49a29c049ef1004d80d42e0461387d877 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
/*
*	File:		Crystal.cpp
*	
*	Version:	1.0
* 
*	Created:	12/9/18
*	
*	Copyright:  Copyright � 2018 Airwindows, All Rights Reserved
* 
*	Disclaimer:	IMPORTANT:  This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in 
*				consideration of your agreement to the following terms, and your use, installation, modification 
*				or redistribution of this Apple software constitutes acceptance of these terms.  If you do 
*				not agree with these terms, please do not use, install, modify or redistribute this Apple 
*				software.
*
*				In consideration of your agreement to abide by the following terms, and subject to these terms, 
*				Apple grants you a personal, non-exclusive license, under Apple's copyrights in this 
*				original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the 
*				Apple Software, with or without modifications, in source and/or binary forms; provided that if you 
*				redistribute the Apple Software in its entirety and without modifications, you must retain this 
*				notice and the following text and disclaimers in all such redistributions of the Apple Software. 
*				Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to 
*				endorse or promote products derived from the Apple Software without specific prior written 
*				permission from Apple.  Except as expressly stated in this notice, no other rights or 
*				licenses, express or implied, are granted by Apple herein, including but not limited to any 
*				patent rights that may be infringed by your derivative works or by other works in which the 
*				Apple Software may be incorporated.
*
*				The Apple Software is provided by Apple on an "AS IS" basis.  APPLE MAKES NO WARRANTIES, EXPRESS OR 
*				IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY 
*				AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE 
*				OR IN COMBINATION WITH YOUR PRODUCTS.
*
*				IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL 
*				DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 
*				OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, 
*				REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER 
*				UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN 
*				IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/*=============================================================================
	Crystal.cpp
	
=============================================================================*/
#include "Crystal.h"


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

COMPONENT_ENTRY(Crystal)


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	Crystal::Crystal
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Crystal::Crystal(AudioUnit component)
	: AUEffectBase(component)
{
	CreateElements();
	Globals()->UseIndexedParameters(kNumberOfParameters);
	SetParameter(kParam_One, kDefaultValue_ParamOne );
	SetParameter(kParam_Two, kDefaultValue_ParamTwo );
	SetParameter(kParam_Three, kDefaultValue_ParamThree );
	SetParameter(kParam_Four, kDefaultValue_ParamFour );
         
#if AU_DEBUG_DISPATCHER
	mDebugDispatcher = new AUDebugDispatcher (this);
#endif
	
}


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	Crystal::GetParameterValueStrings
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult			Crystal::GetParameterValueStrings(AudioUnitScope		inScope,
                                                                AudioUnitParameterID	inParameterID,
                                                                CFArrayRef *		outStrings)
{
        
    return kAudioUnitErr_InvalidProperty;
}



//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	Crystal::GetParameterInfo
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult			Crystal::GetParameterInfo(AudioUnitScope		inScope,
                                                        AudioUnitParameterID	inParameterID,
                                                        AudioUnitParameterInfo	&outParameterInfo )
{
	ComponentResult result = noErr;

	outParameterInfo.flags = 	kAudioUnitParameterFlag_IsWritable
						|		kAudioUnitParameterFlag_IsReadable;
    
    if (inScope == kAudioUnitScope_Global) {
        switch(inParameterID)
        {
           case kParam_One:
                AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false);
                outParameterInfo.unit = kAudioUnitParameterUnit_Generic;
                outParameterInfo.minValue = 0.0;
                outParameterInfo.maxValue = 1.0;
                outParameterInfo.defaultValue = kDefaultValue_ParamOne;
                break;
            case kParam_Two:
                AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false);
                outParameterInfo.unit = kAudioUnitParameterUnit_Generic;
                outParameterInfo.minValue = 0.0;
                outParameterInfo.maxValue = 1.0;
                outParameterInfo.defaultValue = kDefaultValue_ParamTwo;
                break;
            case kParam_Three:
                AUBase::FillInParameterName (outParameterInfo, kParameterThreeName, false);
                outParameterInfo.unit = kAudioUnitParameterUnit_Generic;
                outParameterInfo.minValue = 0.0;
                outParameterInfo.maxValue = 3.0;
                outParameterInfo.defaultValue = kDefaultValue_ParamThree;
                break;
           case kParam_Four:
                AUBase::FillInParameterName (outParameterInfo, kParameterFourName, false);
                outParameterInfo.unit = kAudioUnitParameterUnit_Generic;
                outParameterInfo.minValue = 0.0;
                outParameterInfo.maxValue = 1.0;
                outParameterInfo.defaultValue = kDefaultValue_ParamFour;
                break;
           default:
                result = kAudioUnitErr_InvalidParameter;
                break;
            }
	} else {
        result = kAudioUnitErr_InvalidParameter;
    }
    


	return result;
}

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	Crystal::GetPropertyInfo
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult			Crystal::GetPropertyInfo (AudioUnitPropertyID	inID,
                                                        AudioUnitScope		inScope,
                                                        AudioUnitElement	inElement,
                                                        UInt32 &		outDataSize,
                                                        Boolean &		outWritable)
{
	return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable);
}

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	Crystal::GetProperty
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult			Crystal::GetProperty(	AudioUnitPropertyID inID,
                                                        AudioUnitScope 		inScope,
                                                        AudioUnitElement 	inElement,
                                                        void *			outData )
{
	return AUEffectBase::GetProperty (inID, inScope, inElement, outData);
}

//	Crystal::Initialize
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult Crystal::Initialize()
{
    ComponentResult result = AUEffectBase::Initialize();
    if (result == noErr)
        Reset(kAudioUnitScope_Global, 0);
    return result;
}

#pragma mark ____CrystalEffectKernel



//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	Crystal::CrystalKernel::Reset()
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
void		Crystal::CrystalKernel::Reset()
{
	for(int count = 0; count < 34; count++) {b[count] = 0;}
	lastSample = 0.0;
	fpNShape = 0.0;
}

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	Crystal::CrystalKernel::Process
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
void		Crystal::CrystalKernel::Process(	const Float32 	*inSourceP,
                                                    Float32		 	*inDestP,
                                                    UInt32 			inFramesToProcess,
                                                    UInt32			inNumChannels, 
                                                    bool			&ioSilence )
{
	UInt32 nSampleFrames = inFramesToProcess;
	const Float32 *sourceP = inSourceP;
	Float32 *destP = inDestP;

	Float64 threshold = GetParameter( kParam_One );
	Float64 hardness;
	Float64 breakup = (1.0-(threshold/2.0))*3.14159265358979;
	Float64 bridgerectifier;
	Float64 sqdrive = GetParameter( kParam_Two );
	if (sqdrive > 1.0) sqdrive *= sqdrive;
	sqdrive = sqrt(sqdrive);
	Float64 indrive = GetParameter( kParam_Three );
	if (indrive > 1.0) indrive *= indrive;
	indrive *= (1.0-(0.1695*sqdrive));
	//no gain loss of convolution for APIcolypse
	//calibrate this to match noise level with character at 1.0
	//you get for instance 0.819 and 1.0-0.819 is 0.181
	Float64 randy;
	Float64 outlevel = GetParameter( kParam_Four );

	if (threshold < 1) hardness = 1.0 / (1.0-threshold);
	else hardness = 999999999999999999999.0;
	//set up hardness to exactly fill gap between threshold and 0db
	//if threshold is literally 1 then hardness is infinite, so we make it very big
	
	while (nSampleFrames-- > 0) {
		long double inputSample = *sourceP;

		static int noisesource = 0;
		int residue;
		double applyresidue;
		noisesource = noisesource % 1700021; noisesource++;
		residue = noisesource * noisesource;
		residue = residue % 170003; residue *= residue;
		residue = residue % 17011; residue *= residue;
		residue = residue % 1709; residue *= residue;
		residue = residue % 173; residue *= residue;
		residue = residue % 17;
		applyresidue = residue;
		applyresidue *= 0.00000001;
		applyresidue *= 0.00000001;
		inputSample += applyresidue;
		if (inputSample<1.2e-38 && -inputSample<1.2e-38) {
			inputSample -= applyresidue;
		}
		//for live air, we always apply the dither noise. Then, if our result is 
		//effectively digital black, we'll subtract it again. We want a 'air' hiss
		inputSample *= indrive;

		//calibrated to match gain through convolution and -0.3 correction
		if (sqdrive > 0.0){
			b[23] = b[22]; b[22] = b[21]; b[21] = b[20]; b[20] = b[19]; b[19] = b[18]; b[18] = b[17]; b[17] = b[16]; b[16] = b[15]; 
			b[15] = b[14]; b[14] = b[13]; b[13] = b[12]; b[12] = b[11]; b[11] = b[10]; b[10] = b[9]; b[9] = b[8]; b[8] = b[7]; 
			b[7] = b[6]; b[6] = b[5]; b[5] = b[4]; b[4] = b[3]; b[3] = b[2]; b[2] = b[1]; b[1] = b[0]; b[0] = inputSample * sqdrive;
			inputSample += (b[1] * (0.38856694371895023  + (0.14001177830115491*fabs(b[1]))));
			inputSample -= (b[2] * (0.17469488984546111  + (0.05204541941091459*fabs(b[2]))));
			inputSample += (b[3] * (0.11643521461774288  - (0.01193121216518472*fabs(b[3]))));
			inputSample -= (b[4] * (0.08874416268268183  - (0.05867502375036486*fabs(b[4]))));
			inputSample += (b[5] * (0.07222999223073785  - (0.08519974113692971*fabs(b[5]))));
			inputSample -= (b[6] * (0.06103207678880003  - (0.09230674983449150*fabs(b[6]))));
			inputSample += (b[7] * (0.05277389277465404  - (0.08487342372497046*fabs(b[7]))));
			inputSample -= (b[8] * (0.04631144388636078  - (0.06976851898821038*fabs(b[8]))));
			inputSample += (b[9] * (0.04102721072495113  - (0.05337974329110802*fabs(b[9]))));
			inputSample -= (b[10] * (0.03656047655964371  - (0.03990914278458497*fabs(b[10]))));
			inputSample += (b[11] * (0.03268677450573373  - (0.03090433934018759*fabs(b[11]))));
			inputSample -= (b[12] * (0.02926012259262895  - (0.02585223214266682*fabs(b[12]))));
			inputSample += (b[13] * (0.02618257163789973  - (0.02326667039588473*fabs(b[13]))));
			inputSample -= (b[14] * (0.02338568277879992  - (0.02167067760829789*fabs(b[14]))));
			inputSample += (b[15] * (0.02082142324645262  - (0.02013392273267951*fabs(b[15]))));
			inputSample -= (b[16] * (0.01845525966656259  - (0.01833038930966512*fabs(b[16]))));
			inputSample += (b[17] * (0.01626113504980445  - (0.01631893218593511*fabs(b[17]))));
			inputSample -= (b[18] * (0.01422084088669267  - (0.01427828125219885*fabs(b[18]))));
			inputSample += (b[19] * (0.01231993595709338  - (0.01233991521342998*fabs(b[19]))));
			inputSample -= (b[20] * (0.01054774630451013  - (0.01054774630542346*fabs(b[20]))));
			inputSample += (b[21] * (0.00889548162355088  - (0.00889548162263755*fabs(b[21]))));
			inputSample -= (b[22] * (0.00735749099304526  - (0.00735749099395860*fabs(b[22]))));
			inputSample += (b[23] * (0.00592812350468000  - (0.00592812350376666*fabs(b[23]))));
		} //the Character plugins as individual processors did this. BussColors applies an averaging factor to produce
		// more of a consistent variation between soft and loud convolutions. For years I thought this code was a
		//mistake and did nothing, but in fact what it's doing is producing slightly different curves for every single
		//convolution kernel location: this will be true of the Character individual plugins as well.
		
		if (fabs(inputSample) > threshold)
		{
			bridgerectifier = (fabs(inputSample)-threshold)*hardness;
			//skip flat area if any, scale to distortion limit
			if (bridgerectifier > breakup) bridgerectifier = breakup;
			//max value for sine function, 'breakup' modeling for trashed console tone
			//more hardness = more solidness behind breakup modeling. more softness, more 'grunge' and sag
			bridgerectifier = sin(bridgerectifier)/hardness;
			//do the sine factor, scale back to proper amount
			if (inputSample > 0) inputSample = bridgerectifier+threshold;
			else inputSample = -(bridgerectifier+threshold);
		} //otherwise we leave it untouched by the overdrive stuff
		//this is the notorious New Channel Density algorithm. It's much less popular than the original Density,
		//because it introduces a point where the saturation 'curve' changes from straight to curved.
		//People don't like these discontinuities, but you can use them for effect or to grit up the sound.

		randy = ((rand()/(double)RAND_MAX)*0.022);
		bridgerectifier = ((inputSample*(1-randy))+(lastSample*randy)) * outlevel;
		lastSample = inputSample;
		inputSample = bridgerectifier; //applies a tiny 'fuzz' to highs: from original Crystal.
		//This is akin to the old Chrome Oxide plugin, applying a fuzz to only the slews. The noise only appears
		//when current and old samples are different from each other, otherwise you can't tell it's there.
		//This is not only during silence but the tops of low frequency waves: it scales down to affect lows more gently.
		
		//noise shaping to 32-bit floating point
		Float32 fpTemp = inputSample;
		fpNShape += (inputSample-fpTemp);
		inputSample += fpNShape;
		//for deeper space and warmth, we try a non-oscillating noise shaping
		//that is kind of ruthless: it will forever retain the rounding errors
		//except we'll dial it back a hair at the end of every buffer processed
		//end noise shaping on 32 bit output
		
		*destP = inputSample;
		
		sourceP += inNumChannels; destP += inNumChannels;
	}
	fpNShape *= 0.999999;
	//we will just delicately dial back the FP noise shaping, not even every sample
	//this is a good place to put subtle 'no runaway' calculations, though bear in mind
	//that it will be called more often when you use shorter sample buffers in the DAW.
	//So, very low latency operation will call these calculations more often.
}