aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/LinuxVST/src/Crystal/CrystalProc.cpp
blob: 9c6235574b692a5bdd0fa95cc90696158d5f506b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
/* ========================================
 *  Crystal - Crystal.h
 *  Copyright (c) 2016 airwindows, All rights reserved
 * ======================================== */

#ifndef __Crystal_H
#include "Crystal.h"
#endif

void Crystal::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) 
{
    float* in1  =  inputs[0];
    float* in2  =  inputs[1];
    float* out1 = outputs[0];
    float* out2 = outputs[1];
	
	double threshold = A;
	double hardness;
	double breakup = (1.0-(threshold/2.0))*3.14159265358979;
	double bridgerectifier;
	double sqdrive = B;
	if (sqdrive > 1.0) sqdrive *= sqdrive;
	sqdrive = sqrt(sqdrive);
	double indrive = C*3.0;
	if (indrive > 1.0) indrive *= indrive;
	indrive *= (1.0-(0.1695*sqdrive));
	//no gain loss of convolution for APIcolypse
	//calibrate this to match noise level with character at 1.0
	//you get for instance 0.819 and 1.0-0.819 is 0.181
	double randy;
	double outlevel = D;
	
	if (threshold < 1) hardness = 1.0 / (1.0-threshold);
	else hardness = 999999999999999999999.0;
	//set up hardness to exactly fill gap between threshold and 0db
	//if threshold is literally 1 then hardness is infinite, so we make it very big
	
    while (--sampleFrames >= 0)
    {
		long double inputSampleL = *in1;
		long double inputSampleR = *in2;

		static int noisesourceL = 0;
		static int noisesourceR = 850010;
		int residue;
		double applyresidue;
		
		noisesourceL = noisesourceL % 1700021; noisesourceL++;
		residue = noisesourceL * noisesourceL;
		residue = residue % 170003; residue *= residue;
		residue = residue % 17011; residue *= residue;
		residue = residue % 1709; residue *= residue;
		residue = residue % 173; residue *= residue;
		residue = residue % 17;
		applyresidue = residue;
		applyresidue *= 0.00000001;
		applyresidue *= 0.00000001;
		inputSampleL += applyresidue;
		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
			inputSampleL -= applyresidue;
		}
		
		noisesourceR = noisesourceR % 1700021; noisesourceR++;
		residue = noisesourceR * noisesourceR;
		residue = residue % 170003; residue *= residue;
		residue = residue % 17011; residue *= residue;
		residue = residue % 1709; residue *= residue;
		residue = residue % 173; residue *= residue;
		residue = residue % 17;
		applyresidue = residue;
		applyresidue *= 0.00000001;
		applyresidue *= 0.00000001;
		inputSampleR += applyresidue;
		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
			inputSampleR -= applyresidue;
		}
		//for live air, we always apply the dither noise. Then, if our result is 
		//effectively digital black, we'll subtract it again. We want a 'air' hiss
		inputSampleL *= indrive;
		inputSampleR *= indrive;
		
		//calibrated to match gain through convolution and -0.3 correction
		if (sqdrive > 0.0){
			bL[23] = bL[22]; bL[22] = bL[21]; bL[21] = bL[20]; bL[20] = bL[19]; bL[19] = bL[18]; bL[18] = bL[17]; bL[17] = bL[16]; bL[16] = bL[15]; 
			bL[15] = bL[14]; bL[14] = bL[13]; bL[13] = bL[12]; bL[12] = bL[11]; bL[11] = bL[10]; bL[10] = bL[9]; bL[9] = bL[8]; bL[8] = bL[7]; 
			bL[7] = bL[6]; bL[6] = bL[5]; bL[5] = bL[4]; bL[4] = bL[3]; bL[3] = bL[2]; bL[2] = bL[1]; bL[1] = bL[0]; bL[0] = inputSampleL * sqdrive;
			inputSampleL += (bL[1] * (0.38856694371895023  + (0.14001177830115491*fabs(bL[1]))));
			inputSampleL -= (bL[2] * (0.17469488984546111  + (0.05204541941091459*fabs(bL[2]))));
			inputSampleL += (bL[3] * (0.11643521461774288  - (0.01193121216518472*fabs(bL[3]))));
			inputSampleL -= (bL[4] * (0.08874416268268183  - (0.05867502375036486*fabs(bL[4]))));
			inputSampleL += (bL[5] * (0.07222999223073785  - (0.08519974113692971*fabs(bL[5]))));
			inputSampleL -= (bL[6] * (0.06103207678880003  - (0.09230674983449150*fabs(bL[6]))));
			inputSampleL += (bL[7] * (0.05277389277465404  - (0.08487342372497046*fabs(bL[7]))));
			inputSampleL -= (bL[8] * (0.04631144388636078  - (0.06976851898821038*fabs(bL[8]))));
			inputSampleL += (bL[9] * (0.04102721072495113  - (0.05337974329110802*fabs(bL[9]))));
			inputSampleL -= (bL[10] * (0.03656047655964371  - (0.03990914278458497*fabs(bL[10]))));
			inputSampleL += (bL[11] * (0.03268677450573373  - (0.03090433934018759*fabs(bL[11]))));
			inputSampleL -= (bL[12] * (0.02926012259262895  - (0.02585223214266682*fabs(bL[12]))));
			inputSampleL += (bL[13] * (0.02618257163789973  - (0.02326667039588473*fabs(bL[13]))));
			inputSampleL -= (bL[14] * (0.02338568277879992  - (0.02167067760829789*fabs(bL[14]))));
			inputSampleL += (bL[15] * (0.02082142324645262  - (0.02013392273267951*fabs(bL[15]))));
			inputSampleL -= (bL[16] * (0.01845525966656259  - (0.01833038930966512*fabs(bL[16]))));
			inputSampleL += (bL[17] * (0.01626113504980445  - (0.01631893218593511*fabs(bL[17]))));
			inputSampleL -= (bL[18] * (0.01422084088669267  - (0.01427828125219885*fabs(bL[18]))));
			inputSampleL += (bL[19] * (0.01231993595709338  - (0.01233991521342998*fabs(bL[19]))));
			inputSampleL -= (bL[20] * (0.01054774630451013  - (0.01054774630542346*fabs(bL[20]))));
			inputSampleL += (bL[21] * (0.00889548162355088  - (0.00889548162263755*fabs(bL[21]))));
			inputSampleL -= (bL[22] * (0.00735749099304526  - (0.00735749099395860*fabs(bL[22]))));
			inputSampleL += (bL[23] * (0.00592812350468000  - (0.00592812350376666*fabs(bL[23]))));
		} //the Character plugins as individual processors did this. BussColors applies an averaging factor to produce
		// more of a consistent variation between soft and loud convolutions. For years I thought this code was a
		//mistake and did nothing, but in fact what it's doing is producing slightly different curves for every single
		//convolution kernel location: this will be true of the Character individual plugins as well.

		//calibrated to match gain through convolution and -0.3 correction
		if (sqdrive > 0.0){
			bR[23] = bR[22]; bR[22] = bR[21]; bR[21] = bR[20]; bR[20] = bR[19]; bR[19] = bR[18]; bR[18] = bR[17]; bR[17] = bR[16]; bR[16] = bR[15]; 
			bR[15] = bR[14]; bR[14] = bR[13]; bR[13] = bR[12]; bR[12] = bR[11]; bR[11] = bR[10]; bR[10] = bR[9]; bR[9] = bR[8]; bR[8] = bR[7]; 
			bR[7] = bR[6]; bR[6] = bR[5]; bR[5] = bR[4]; bR[4] = bR[3]; bR[3] = bR[2]; bR[2] = bR[1]; bR[1] = bR[0]; bR[0] = inputSampleR * sqdrive;
			inputSampleR += (bR[1] * (0.38856694371895023  + (0.14001177830115491*fabs(bR[1]))));
			inputSampleR -= (bR[2] * (0.17469488984546111  + (0.05204541941091459*fabs(bR[2]))));
			inputSampleR += (bR[3] * (0.11643521461774288  - (0.01193121216518472*fabs(bR[3]))));
			inputSampleR -= (bR[4] * (0.08874416268268183  - (0.05867502375036486*fabs(bR[4]))));
			inputSampleR += (bR[5] * (0.07222999223073785  - (0.08519974113692971*fabs(bR[5]))));
			inputSampleR -= (bR[6] * (0.06103207678880003  - (0.09230674983449150*fabs(bR[6]))));
			inputSampleR += (bR[7] * (0.05277389277465404  - (0.08487342372497046*fabs(bR[7]))));
			inputSampleR -= (bR[8] * (0.04631144388636078  - (0.06976851898821038*fabs(bR[8]))));
			inputSampleR += (bR[9] * (0.04102721072495113  - (0.05337974329110802*fabs(bR[9]))));
			inputSampleR -= (bR[10] * (0.03656047655964371  - (0.03990914278458497*fabs(bR[10]))));
			inputSampleR += (bR[11] * (0.03268677450573373  - (0.03090433934018759*fabs(bR[11]))));
			inputSampleR -= (bR[12] * (0.02926012259262895  - (0.02585223214266682*fabs(bR[12]))));
			inputSampleR += (bR[13] * (0.02618257163789973  - (0.02326667039588473*fabs(bR[13]))));
			inputSampleR -= (bR[14] * (0.02338568277879992  - (0.02167067760829789*fabs(bR[14]))));
			inputSampleR += (bR[15] * (0.02082142324645262  - (0.02013392273267951*fabs(bR[15]))));
			inputSampleR -= (bR[16] * (0.01845525966656259  - (0.01833038930966512*fabs(bR[16]))));
			inputSampleR += (bR[17] * (0.01626113504980445  - (0.01631893218593511*fabs(bR[17]))));
			inputSampleR -= (bR[18] * (0.01422084088669267  - (0.01427828125219885*fabs(bR[18]))));
			inputSampleR += (bR[19] * (0.01231993595709338  - (0.01233991521342998*fabs(bR[19]))));
			inputSampleR -= (bR[20] * (0.01054774630451013  - (0.01054774630542346*fabs(bR[20]))));
			inputSampleR += (bR[21] * (0.00889548162355088  - (0.00889548162263755*fabs(bR[21]))));
			inputSampleR -= (bR[22] * (0.00735749099304526  - (0.00735749099395860*fabs(bR[22]))));
			inputSampleR += (bR[23] * (0.00592812350468000  - (0.00592812350376666*fabs(bR[23]))));
		} //the Character plugins as individual processors did this. BussColors applies an averaging factor to produce
		// more of a consistent variation between soft and loud convolutions. For years I thought this code was a
		//mistake and did nothing, but in fact what it's doing is producing slightly different curves for every single
		//convolution kernel location: this will be true of the Character individual plugins as well.
		
		if (fabs(inputSampleL) > threshold)
		{
			bridgerectifier = (fabs(inputSampleL)-threshold)*hardness;
			//skip flat area if any, scale to distortion limit
			if (bridgerectifier > breakup) bridgerectifier = breakup;
			//max value for sine function, 'breakup' modeling for trashed console tone
			//more hardness = more solidness behind breakup modeling. more softness, more 'grunge' and sag
			bridgerectifier = sin(bridgerectifier)/hardness;
			//do the sine factor, scale back to proper amount
			if (inputSampleL > 0) inputSampleL = bridgerectifier+threshold;
			else inputSampleL = -(bridgerectifier+threshold);
		} //otherwise we leave it untouched by the overdrive stuff
		//this is the notorious New Channel Density algorithm. It's much less popular than the original Density,
		//because it introduces a point where the saturation 'curve' changes from straight to curved.
		//People don't like these discontinuities, but you can use them for effect or to grit up the sound.

		if (fabs(inputSampleR) > threshold)
		{
			bridgerectifier = (fabs(inputSampleR)-threshold)*hardness;
			//skip flat area if any, scale to distortion limit
			if (bridgerectifier > breakup) bridgerectifier = breakup;
			//max value for sine function, 'breakup' modeling for trashed console tone
			//more hardness = more solidness behind breakup modeling. more softness, more 'grunge' and sag
			bridgerectifier = sin(bridgerectifier)/hardness;
			//do the sine factor, scale back to proper amount
			if (inputSampleR > 0) inputSampleR = bridgerectifier+threshold;
			else inputSampleR = -(bridgerectifier+threshold);
		} //otherwise we leave it untouched by the overdrive stuff
		//this is the notorious New Channel Density algorithm. It's much less popular than the original Density,
		//because it introduces a point where the saturation 'curve' changes from straight to curved.
		//People don't like these discontinuities, but you can use them for effect or to grit up the sound.
		
		randy = ((rand()/(double)RAND_MAX)*0.022);
		bridgerectifier = ((inputSampleL*(1-randy))+(lastSampleL*randy)) * outlevel;
		lastSampleL = inputSampleL;
		inputSampleL = bridgerectifier; //applies a tiny 'fuzz' to highs: from original Crystal.
		
		randy = ((rand()/(double)RAND_MAX)*0.022);
		bridgerectifier = ((inputSampleR*(1-randy))+(lastSampleR*randy)) * outlevel;
		lastSampleR = inputSampleR;
		inputSampleR = bridgerectifier; //applies a tiny 'fuzz' to highs: from original Crystal.
		
		//This is akin to the old Chrome Oxide plugin, applying a fuzz to only the slews. The noise only appears
		//when current and old samples are different from each other, otherwise you can't tell it's there.
		//This is not only during silence but the tops of low frequency waves: it scales down to affect lows more gently.

		//noise shaping to 32-bit floating point
		float fpTemp = inputSampleL;
		fpNShapeL += (inputSampleL-fpTemp);
		inputSampleL += fpNShapeL;
		//if this confuses you look at the wordlength for fpTemp :)
		fpTemp = inputSampleR;
		fpNShapeR += (inputSampleR-fpTemp);
		inputSampleR += fpNShapeR;
		//for deeper space and warmth, we try a non-oscillating noise shaping
		//that is kind of ruthless: it will forever retain the rounding errors
		//except we'll dial it back a hair at the end of every buffer processed
		//end noise shaping on 32 bit output
		
		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
	fpNShapeL *= 0.999999;
	fpNShapeR *= 0.999999;
	//we will just delicately dial back the FP noise shaping, not even every sample
	//this is a good place to put subtle 'no runaway' calculations, though bear in mind
	//that it will be called more often when you use shorter sample buffers in the DAW.
	//So, very low latency operation will call these calculations more often.	
}

void Crystal::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) 
{
    double* in1  =  inputs[0];
    double* in2  =  inputs[1];
    double* out1 = outputs[0];
    double* out2 = outputs[1];
	
	double threshold = A;
	double hardness;
	double breakup = (1.0-(threshold/2.0))*3.14159265358979;
	double bridgerectifier;
	double sqdrive = B;
	if (sqdrive > 1.0) sqdrive *= sqdrive;
	sqdrive = sqrt(sqdrive);
	double indrive = C*3.0;
	if (indrive > 1.0) indrive *= indrive;
	indrive *= (1.0-(0.1695*sqdrive));
	//no gain loss of convolution for APIcolypse
	//calibrate this to match noise level with character at 1.0
	//you get for instance 0.819 and 1.0-0.819 is 0.181
	double randy;
	double outlevel = D;
	
	if (threshold < 1) hardness = 1.0 / (1.0-threshold);
	else hardness = 999999999999999999999.0;
	//set up hardness to exactly fill gap between threshold and 0db
	//if threshold is literally 1 then hardness is infinite, so we make it very big
	
    while (--sampleFrames >= 0)
    {
		long double inputSampleL = *in1;
		long double inputSampleR = *in2;

		static int noisesourceL = 0;
		static int noisesourceR = 850010;
		int residue;
		double applyresidue;
		
		noisesourceL = noisesourceL % 1700021; noisesourceL++;
		residue = noisesourceL * noisesourceL;
		residue = residue % 170003; residue *= residue;
		residue = residue % 17011; residue *= residue;
		residue = residue % 1709; residue *= residue;
		residue = residue % 173; residue *= residue;
		residue = residue % 17;
		applyresidue = residue;
		applyresidue *= 0.00000001;
		applyresidue *= 0.00000001;
		inputSampleL += applyresidue;
		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
			inputSampleL -= applyresidue;
		}
		
		noisesourceR = noisesourceR % 1700021; noisesourceR++;
		residue = noisesourceR * noisesourceR;
		residue = residue % 170003; residue *= residue;
		residue = residue % 17011; residue *= residue;
		residue = residue % 1709; residue *= residue;
		residue = residue % 173; residue *= residue;
		residue = residue % 17;
		applyresidue = residue;
		applyresidue *= 0.00000001;
		applyresidue *= 0.00000001;
		inputSampleR += applyresidue;
		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
			inputSampleR -= applyresidue;
		}
		//for live air, we always apply the dither noise. Then, if our result is 
		//effectively digital black, we'll subtract it again. We want a 'air' hiss
		inputSampleL *= indrive;
		inputSampleR *= indrive;
		
		//calibrated to match gain through convolution and -0.3 correction
		if (sqdrive > 0.0){
			bL[23] = bL[22]; bL[22] = bL[21]; bL[21] = bL[20]; bL[20] = bL[19]; bL[19] = bL[18]; bL[18] = bL[17]; bL[17] = bL[16]; bL[16] = bL[15]; 
			bL[15] = bL[14]; bL[14] = bL[13]; bL[13] = bL[12]; bL[12] = bL[11]; bL[11] = bL[10]; bL[10] = bL[9]; bL[9] = bL[8]; bL[8] = bL[7]; 
			bL[7] = bL[6]; bL[6] = bL[5]; bL[5] = bL[4]; bL[4] = bL[3]; bL[3] = bL[2]; bL[2] = bL[1]; bL[1] = bL[0]; bL[0] = inputSampleL * sqdrive;
			inputSampleL += (bL[1] * (0.38856694371895023  + (0.14001177830115491*fabs(bL[1]))));
			inputSampleL -= (bL[2] * (0.17469488984546111  + (0.05204541941091459*fabs(bL[2]))));
			inputSampleL += (bL[3] * (0.11643521461774288  - (0.01193121216518472*fabs(bL[3]))));
			inputSampleL -= (bL[4] * (0.08874416268268183  - (0.05867502375036486*fabs(bL[4]))));
			inputSampleL += (bL[5] * (0.07222999223073785  - (0.08519974113692971*fabs(bL[5]))));
			inputSampleL -= (bL[6] * (0.06103207678880003  - (0.09230674983449150*fabs(bL[6]))));
			inputSampleL += (bL[7] * (0.05277389277465404  - (0.08487342372497046*fabs(bL[7]))));
			inputSampleL -= (bL[8] * (0.04631144388636078  - (0.06976851898821038*fabs(bL[8]))));
			inputSampleL += (bL[9] * (0.04102721072495113  - (0.05337974329110802*fabs(bL[9]))));
			inputSampleL -= (bL[10] * (0.03656047655964371  - (0.03990914278458497*fabs(bL[10]))));
			inputSampleL += (bL[11] * (0.03268677450573373  - (0.03090433934018759*fabs(bL[11]))));
			inputSampleL -= (bL[12] * (0.02926012259262895  - (0.02585223214266682*fabs(bL[12]))));
			inputSampleL += (bL[13] * (0.02618257163789973  - (0.02326667039588473*fabs(bL[13]))));
			inputSampleL -= (bL[14] * (0.02338568277879992  - (0.02167067760829789*fabs(bL[14]))));
			inputSampleL += (bL[15] * (0.02082142324645262  - (0.02013392273267951*fabs(bL[15]))));
			inputSampleL -= (bL[16] * (0.01845525966656259  - (0.01833038930966512*fabs(bL[16]))));
			inputSampleL += (bL[17] * (0.01626113504980445  - (0.01631893218593511*fabs(bL[17]))));
			inputSampleL -= (bL[18] * (0.01422084088669267  - (0.01427828125219885*fabs(bL[18]))));
			inputSampleL += (bL[19] * (0.01231993595709338  - (0.01233991521342998*fabs(bL[19]))));
			inputSampleL -= (bL[20] * (0.01054774630451013  - (0.01054774630542346*fabs(bL[20]))));
			inputSampleL += (bL[21] * (0.00889548162355088  - (0.00889548162263755*fabs(bL[21]))));
			inputSampleL -= (bL[22] * (0.00735749099304526  - (0.00735749099395860*fabs(bL[22]))));
			inputSampleL += (bL[23] * (0.00592812350468000  - (0.00592812350376666*fabs(bL[23]))));
		} //the Character plugins as individual processors did this. BussColors applies an averaging factor to produce
		// more of a consistent variation between soft and loud convolutions. For years I thought this code was a
		//mistake and did nothing, but in fact what it's doing is producing slightly different curves for every single
		//convolution kernel location: this will be true of the Character individual plugins as well.
		
		//calibrated to match gain through convolution and -0.3 correction
		if (sqdrive > 0.0){
			bR[23] = bR[22]; bR[22] = bR[21]; bR[21] = bR[20]; bR[20] = bR[19]; bR[19] = bR[18]; bR[18] = bR[17]; bR[17] = bR[16]; bR[16] = bR[15]; 
			bR[15] = bR[14]; bR[14] = bR[13]; bR[13] = bR[12]; bR[12] = bR[11]; bR[11] = bR[10]; bR[10] = bR[9]; bR[9] = bR[8]; bR[8] = bR[7]; 
			bR[7] = bR[6]; bR[6] = bR[5]; bR[5] = bR[4]; bR[4] = bR[3]; bR[3] = bR[2]; bR[2] = bR[1]; bR[1] = bR[0]; bR[0] = inputSampleR * sqdrive;
			inputSampleR += (bR[1] * (0.38856694371895023  + (0.14001177830115491*fabs(bR[1]))));
			inputSampleR -= (bR[2] * (0.17469488984546111  + (0.05204541941091459*fabs(bR[2]))));
			inputSampleR += (bR[3] * (0.11643521461774288  - (0.01193121216518472*fabs(bR[3]))));
			inputSampleR -= (bR[4] * (0.08874416268268183  - (0.05867502375036486*fabs(bR[4]))));
			inputSampleR += (bR[5] * (0.07222999223073785  - (0.08519974113692971*fabs(bR[5]))));
			inputSampleR -= (bR[6] * (0.06103207678880003  - (0.09230674983449150*fabs(bR[6]))));
			inputSampleR += (bR[7] * (0.05277389277465404  - (0.08487342372497046*fabs(bR[7]))));
			inputSampleR -= (bR[8] * (0.04631144388636078  - (0.06976851898821038*fabs(bR[8]))));
			inputSampleR += (bR[9] * (0.04102721072495113  - (0.05337974329110802*fabs(bR[9]))));
			inputSampleR -= (bR[10] * (0.03656047655964371  - (0.03990914278458497*fabs(bR[10]))));
			inputSampleR += (bR[11] * (0.03268677450573373  - (0.03090433934018759*fabs(bR[11]))));
			inputSampleR -= (bR[12] * (0.02926012259262895  - (0.02585223214266682*fabs(bR[12]))));
			inputSampleR += (bR[13] * (0.02618257163789973  - (0.02326667039588473*fabs(bR[13]))));
			inputSampleR -= (bR[14] * (0.02338568277879992  - (0.02167067760829789*fabs(bR[14]))));
			inputSampleR += (bR[15] * (0.02082142324645262  - (0.02013392273267951*fabs(bR[15]))));
			inputSampleR -= (bR[16] * (0.01845525966656259  - (0.01833038930966512*fabs(bR[16]))));
			inputSampleR += (bR[17] * (0.01626113504980445  - (0.01631893218593511*fabs(bR[17]))));
			inputSampleR -= (bR[18] * (0.01422084088669267  - (0.01427828125219885*fabs(bR[18]))));
			inputSampleR += (bR[19] * (0.01231993595709338  - (0.01233991521342998*fabs(bR[19]))));
			inputSampleR -= (bR[20] * (0.01054774630451013  - (0.01054774630542346*fabs(bR[20]))));
			inputSampleR += (bR[21] * (0.00889548162355088  - (0.00889548162263755*fabs(bR[21]))));
			inputSampleR -= (bR[22] * (0.00735749099304526  - (0.00735749099395860*fabs(bR[22]))));
			inputSampleR += (bR[23] * (0.00592812350468000  - (0.00592812350376666*fabs(bR[23]))));
		} //the Character plugins as individual processors did this. BussColors applies an averaging factor to produce
		// more of a consistent variation between soft and loud convolutions. For years I thought this code was a
		//mistake and did nothing, but in fact what it's doing is producing slightly different curves for every single
		//convolution kernel location: this will be true of the Character individual plugins as well.
		
		if (fabs(inputSampleL) > threshold)
		{
			bridgerectifier = (fabs(inputSampleL)-threshold)*hardness;
			//skip flat area if any, scale to distortion limit
			if (bridgerectifier > breakup) bridgerectifier = breakup;
			//max value for sine function, 'breakup' modeling for trashed console tone
			//more hardness = more solidness behind breakup modeling. more softness, more 'grunge' and sag
			bridgerectifier = sin(bridgerectifier)/hardness;
			//do the sine factor, scale back to proper amount
			if (inputSampleL > 0) inputSampleL = bridgerectifier+threshold;
			else inputSampleL = -(bridgerectifier+threshold);
		} //otherwise we leave it untouched by the overdrive stuff
		//this is the notorious New Channel Density algorithm. It's much less popular than the original Density,
		//because it introduces a point where the saturation 'curve' changes from straight to curved.
		//People don't like these discontinuities, but you can use them for effect or to grit up the sound.
		
		if (fabs(inputSampleR) > threshold)
		{
			bridgerectifier = (fabs(inputSampleR)-threshold)*hardness;
			//skip flat area if any, scale to distortion limit
			if (bridgerectifier > breakup) bridgerectifier = breakup;
			//max value for sine function, 'breakup' modeling for trashed console tone
			//more hardness = more solidness behind breakup modeling. more softness, more 'grunge' and sag
			bridgerectifier = sin(bridgerectifier)/hardness;
			//do the sine factor, scale back to proper amount
			if (inputSampleR > 0) inputSampleR = bridgerectifier+threshold;
			else inputSampleR = -(bridgerectifier+threshold);
		} //otherwise we leave it untouched by the overdrive stuff
		//this is the notorious New Channel Density algorithm. It's much less popular than the original Density,
		//because it introduces a point where the saturation 'curve' changes from straight to curved.
		//People don't like these discontinuities, but you can use them for effect or to grit up the sound.
		
		randy = ((rand()/(double)RAND_MAX)*0.022);
		bridgerectifier = ((inputSampleL*(1-randy))+(lastSampleL*randy)) * outlevel;
		lastSampleL = inputSampleL;
		inputSampleL = bridgerectifier; //applies a tiny 'fuzz' to highs: from original Crystal.
		
		randy = ((rand()/(double)RAND_MAX)*0.022);
		bridgerectifier = ((inputSampleR*(1-randy))+(lastSampleR*randy)) * outlevel;
		lastSampleR = inputSampleR;
		inputSampleR = bridgerectifier; //applies a tiny 'fuzz' to highs: from original Crystal.
		
		//This is akin to the old Chrome Oxide plugin, applying a fuzz to only the slews. The noise only appears
		//when current and old samples are different from each other, otherwise you can't tell it's there.
		//This is not only during silence but the tops of low frequency waves: it scales down to affect lows more gently.
		
		//noise shaping to 64-bit floating point
		double fpTemp = inputSampleL;
		fpNShapeL += (inputSampleL-fpTemp);
		inputSampleL += fpNShapeL;
		//if this confuses you look at the wordlength for fpTemp :)
		fpTemp = inputSampleR;
		fpNShapeR += (inputSampleR-fpTemp);
		inputSampleR += fpNShapeR;
		//for deeper space and warmth, we try a non-oscillating noise shaping
		//that is kind of ruthless: it will forever retain the rounding errors
		//except we'll dial it back a hair at the end of every buffer processed
		//end noise shaping on 64 bit output
		
		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
	fpNShapeL *= 0.999999;
	fpNShapeR *= 0.999999;
	//we will just delicately dial back the FP noise shaping, not even every sample
	//this is a good place to put subtle 'no runaway' calculations, though bear in mind
	//that it will be called more often when you use shorter sample buffers in the DAW.
	//So, very low latency operation will call these calculations more often.	
}