aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/LinuxVST/build/Beam/BeamProc.cpp
blob: 920f5b4131b2dea900b01a2425f3c80de8732735 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
/* ========================================
 *  Beam - Beam.h
 *  Copyright (c) 2016 airwindows, All rights reserved
 * ======================================== */

#ifndef __Beam_H
#include "Beam.h"
#endif

void Beam::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) 
{
    float* in1  =  inputs[0];
    float* in2  =  inputs[1];
    float* out1 = outputs[0];
    float* out2 = outputs[1];

	int processing = (VstInt32)( A * 1.999 );
	float sonority = B * 1.618033988749894848204586;
	double overallscale = 1.0;
	overallscale /= 44100.0;
	overallscale *= getSampleRate();
	int depth = (int)(17.0*overallscale);
	if (depth < 3) depth = 3;
	if (depth > 98) depth = 98;
	bool highres = false;
	if (processing == 1) highres = true;
	float scaleFactor;
	if (highres) scaleFactor = 8388608.0;
	else scaleFactor = 32768.0;
	float derez = C;
	if (derez > 0.0) scaleFactor *= pow(1.0-derez,6);
	if (scaleFactor < 0.0001) scaleFactor = 0.0001;
	
    while (--sampleFrames >= 0)
    {
		long double inputSampleL = *in1;
		long double inputSampleR = *in2;
		if (fabs(inputSampleL)<1.18e-37) inputSampleL = fpd * 1.18e-37;
		fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
		if (fabs(inputSampleR)<1.18e-37) inputSampleR = fpd * 1.18e-37;
		fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
		
		inputSampleL *= scaleFactor;
		inputSampleR *= scaleFactor;
		//0-1 is now one bit, now we dither
		
		//We are doing it first Left, then Right, because the loops may run faster if
		//they aren't too jammed full of variables. This means re-running code.
		
		//begin left
		int quantA = floor(inputSampleL);
		int quantB = floor(inputSampleL+1.0);
		//to do this style of dither, we quantize in either direction and then
		//do a reconstruction of what the result will be for each choice.
		//We then evaluate which one we like, and keep a history of what we previously had
		
		float expectedSlewA = 0;
		for(int x = 0; x < depth; x++) {
			expectedSlewA += (lastSampleL[x+1] - lastSampleL[x]);
		}
		float expectedSlewB = expectedSlewA;
		expectedSlewA += (lastSampleL[0] - quantA);
		expectedSlewB += (lastSampleL[0] - quantB);
		//now we have a collection of all slews, averaged and left at total scale
		
		float clamp = sonority;
		if (fabs(inputSampleL) < sonority) clamp = fabs(inputSampleL);

		float testA = fabs(fabs(expectedSlewA)-clamp);
		float testB = fabs(fabs(expectedSlewB)-clamp);
		//doing this means the result will be lowest when it's reaching the target slope across
		//the desired time range, either positively or negatively. Should produce the same target
		//at whatever sample rate, as high rate stuff produces smaller increments.
		
		if (testA < testB) inputSampleL = quantA;
		else inputSampleL = quantB;
		//select whichever one departs LEAST from the vector of averaged
		//reconstructed previous final samples. This will force a kind of dithering
		//as it'll make the output end up as smooth as possible
		
		for(int x = depth; x >=0; x--) {
			lastSampleL[x+1] = lastSampleL[x];
		}
		lastSampleL[0] = inputSampleL;
		//end left
		
		//begin right
		quantA = floor(inputSampleR);
		quantB = floor(inputSampleR+1.0);
		//to do this style of dither, we quantize in either direction and then
		//do a reconstruction of what the result will be for each choice.
		//We then evaluate which one we like, and keep a history of what we previously had
		
		expectedSlewA = 0;
		for(int x = 0; x < depth; x++) {
			expectedSlewA += (lastSampleR[x+1] - lastSampleR[x]);
		}
		expectedSlewB = expectedSlewA;
		expectedSlewA += (lastSampleR[0] - quantA);
		expectedSlewB += (lastSampleR[0] - quantB);
		//now we have a collection of all slews, averaged and left at total scale
		
		clamp = sonority;
		if (fabs(inputSampleR) < sonority) clamp = fabs(inputSampleR);

		testA = fabs(fabs(expectedSlewA)-clamp);
		testB = fabs(fabs(expectedSlewB)-clamp);
		//doing this means the result will be lowest when it's reaching the target slope across
		//the desired time range, either positively or negatively. Should produce the same target
		//at whatever sample rate, as high rate stuff produces smaller increments.
		
		if (testA < testB) inputSampleR = quantA;
		else inputSampleR = quantB;
		//select whichever one departs LEAST from the vector of averaged
		//reconstructed previous final samples. This will force a kind of dithering
		//as it'll make the output end up as smooth as possible
		
		for(int x = depth; x >=0; x--) {
			lastSampleR[x+1] = lastSampleR[x];
		}
		lastSampleR[0] = inputSampleR;
		//end right
		
		inputSampleL /= scaleFactor;
		inputSampleR /= scaleFactor;
		
		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}

void Beam::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) 
{
    double* in1  =  inputs[0];
    double* in2  =  inputs[1];
    double* out1 = outputs[0];
    double* out2 = outputs[1];

	int processing = (VstInt32)( A * 1.999 );
	float sonority = B * 1.618033988749894848204586;
	double overallscale = 1.0;
	overallscale /= 44100.0;
	overallscale *= getSampleRate();
	int depth = (int)(17.0*overallscale);
	if (depth < 3) depth = 3;
	if (depth > 98) depth = 98;
	bool highres = false;
	if (processing == 1) highres = true;
	float scaleFactor;
	if (highres) scaleFactor = 8388608.0;
	else scaleFactor = 32768.0;
	float derez = C;
	if (derez > 0.0) scaleFactor *= pow(1.0-derez,6);
	if (scaleFactor < 1.0) scaleFactor = 1.0;

    while (--sampleFrames >= 0)
    {
		long double inputSampleL = *in1;
		long double inputSampleR = *in2;
		if (fabs(inputSampleL)<1.18e-43) inputSampleL = fpd * 1.18e-43;
		fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
		if (fabs(inputSampleR)<1.18e-43) inputSampleR = fpd * 1.18e-43;
		fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
		
		inputSampleL *= scaleFactor;
		inputSampleR *= scaleFactor;
		//0-1 is now one bit, now we dither

		//We are doing it first Left, then Right, because the loops may run faster if
		//they aren't too jammed full of variables. This means re-running code.
		
		//begin left
		int quantA = floor(inputSampleL);
		int quantB = floor(inputSampleL+1.0);
		//to do this style of dither, we quantize in either direction and then
		//do a reconstruction of what the result will be for each choice.
		//We then evaluate which one we like, and keep a history of what we previously had
		
		float expectedSlewA = 0;
		for(int x = 0; x < depth; x++) {
			expectedSlewA += (lastSampleL[x+1] - lastSampleL[x]);
		}
		float expectedSlewB = expectedSlewA;
		expectedSlewA += (lastSampleL[0] - quantA);
		expectedSlewB += (lastSampleL[0] - quantB);
		//now we have a collection of all slews, averaged and left at total scale
		
		float clamp = sonority;
		if (fabs(inputSampleL) < sonority) clamp = fabs(inputSampleL);

		float testA = fabs(fabs(expectedSlewA)-clamp);
		float testB = fabs(fabs(expectedSlewB)-clamp);
		//doing this means the result will be lowest when it's reaching the target slope across
		//the desired time range, either positively or negatively. Should produce the same target
		//at whatever sample rate, as high rate stuff produces smaller increments.
		
		if (testA < testB) inputSampleL = quantA;
		else inputSampleL = quantB;
		//select whichever one departs LEAST from the vector of averaged
		//reconstructed previous final samples. This will force a kind of dithering
		//as it'll make the output end up as smooth as possible
		
		for(int x = depth; x >=0; x--) {
			lastSampleL[x+1] = lastSampleL[x];
		}
		lastSampleL[0] = inputSampleL;
		//end left
		
		//begin right
		quantA = floor(inputSampleR);
		quantB = floor(inputSampleR+1.0);
		//to do this style of dither, we quantize in either direction and then
		//do a reconstruction of what the result will be for each choice.
		//We then evaluate which one we like, and keep a history of what we previously had
		
		expectedSlewA = 0;
		for(int x = 0; x < depth; x++) {
			expectedSlewA += (lastSampleR[x+1] - lastSampleR[x]);
		}
		expectedSlewB = expectedSlewA;
		expectedSlewA += (lastSampleR[0] - quantA);
		expectedSlewB += (lastSampleR[0] - quantB);
		//now we have a collection of all slews, averaged and left at total scale
		
		clamp = sonority;
		if (fabs(inputSampleR) < sonority) clamp = fabs(inputSampleR);
		
		testA = fabs(fabs(expectedSlewA)-clamp);
		testB = fabs(fabs(expectedSlewB)-clamp);
		//doing this means the result will be lowest when it's reaching the target slope across
		//the desired time range, either positively or negatively. Should produce the same target
		//at whatever sample rate, as high rate stuff produces smaller increments.
		
		if (testA < testB) inputSampleR = quantA;
		else inputSampleR = quantB;
		//select whichever one departs LEAST from the vector of averaged
		//reconstructed previous final samples. This will force a kind of dithering
		//as it'll make the output end up as smooth as possible
		
		for(int x = depth; x >=0; x--) {
			lastSampleR[x+1] = lastSampleR[x];
		}
		lastSampleR[0] = inputSampleR;
		//end right
		
		inputSampleL /= scaleFactor;
		inputSampleR /= scaleFactor;
		
		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}