aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/WinVST/Wider/WiderProc.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/WinVST/Wider/WiderProc.cpp')
-rwxr-xr-xplugins/WinVST/Wider/WiderProc.cpp336
1 files changed, 336 insertions, 0 deletions
diff --git a/plugins/WinVST/Wider/WiderProc.cpp b/plugins/WinVST/Wider/WiderProc.cpp
new file mode 100755
index 0000000..618e651
--- /dev/null
+++ b/plugins/WinVST/Wider/WiderProc.cpp
@@ -0,0 +1,336 @@
+/* ========================================
+ * Wider - Wider.h
+ * Copyright (c) 2016 airwindows, All rights reserved
+ * ======================================== */
+
+#ifndef __Wider_H
+#include "Wider.h"
+#endif
+
+void Wider::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames)
+{
+ float* in1 = inputs[0];
+ float* in2 = inputs[1];
+ float* out1 = outputs[0];
+ float* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+ float fpTemp;
+ long double fpOld = 0.618033988749894848204586; //golden ratio!
+ long double fpNew = 1.0 - fpOld;
+
+ long double inputSampleL;
+ long double inputSampleR;
+ double drySampleL;
+ double drySampleR;
+ long double mid;
+ long double side;
+ double out;
+ double densityside = (A*2.0)-1.0;
+ double densitymid = (B*2.0)-1.0;
+ double wet = C;
+ double dry = 1.0 - wet;
+ wet *= 0.5; //we make mid-side by adding/subtracting both channels into each channel
+ //and that's why we gotta divide it by 2: otherwise everything's doubled. So, premultiply it to save an extra 'math'
+ double offset = (densityside-densitymid)/2;
+ if (offset > 0) offset = sin(offset);
+ if (offset < 0) offset = -sin(-offset);
+ offset = -(pow(offset,4) * 20 * overallscale);
+ int near = (int)floor(fabs(offset));
+ double farLevel = fabs(offset) - near;
+ int far = near + 1;
+ double nearLevel = 1.0 - farLevel;
+ double bridgerectifier;
+ //interpolating the sample
+
+ while (--sampleFrames >= 0)
+ {
+ inputSampleL = *in1;
+ inputSampleR = *in2;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ static int noisesource = 0;
+ //this declares a variable before anything else is compiled. It won't keep assigning
+ //it to 0 for every sample, it's as if the declaration doesn't exist in this context,
+ //but it lets me add this denormalization fix in a single place rather than updating
+ //it in three different locations. The variable isn't thread-safe but this is only
+ //a random seed and we can share it with whatever.
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL = applyresidue;
+ }
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ static int noisesource = 0;
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR = applyresidue;
+ //this denormalization routine produces a white noise at -300 dB which the noise
+ //shaping will interact with to produce a bipolar output, but the noise is actually
+ //all positive. That should stop any variables from going denormal, and the routine
+ //only kicks in if digital black is input. As a final touch, if you save to 24-bit
+ //the silence will return to being digital black again.
+ }
+ drySampleL = inputSampleL;
+ drySampleR = inputSampleR;
+ //assign working variables
+ mid = inputSampleL + inputSampleR;
+ side = inputSampleL - inputSampleR;
+ //assign mid and side. Now, High Impact code
+
+ if (densityside != 0.0)
+ {
+ out = fabs(densityside);
+ bridgerectifier = fabs(side)*1.57079633;
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ if (densityside > 0) bridgerectifier = sin(bridgerectifier);
+ else bridgerectifier = 1-cos(bridgerectifier);
+ //produce either boosted or starved version
+ if (side > 0) side = (side*(1-out))+(bridgerectifier*out);
+ else side = (side*(1-out))-(bridgerectifier*out);
+ //blend according to density control
+ }
+
+ if (densitymid != 0.0)
+ {
+ out = fabs(densitymid);
+ bridgerectifier = fabs(mid)*1.57079633;
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ if (densitymid > 0) bridgerectifier = sin(bridgerectifier);
+ else bridgerectifier = 1-cos(bridgerectifier);
+ //produce either boosted or starved version
+ if (mid > 0) mid = (mid*(1-out))+(bridgerectifier*out);
+ else mid = (mid*(1-out))-(bridgerectifier*out);
+ //blend according to density control
+ }
+
+ if (count < 1 || count > 2048) {count = 2048;}
+ if (offset > 0)
+ {
+ p[count+2048] = p[count] = mid;
+ mid = p[count+near]*nearLevel;
+ mid += p[count+far]*farLevel;
+ }
+
+ if (offset < 0)
+ {
+ p[count+2048] = p[count] = side;
+ side = p[count+near]*nearLevel;
+ side += p[count+far]*farLevel;
+ }
+ count -= 1;
+
+ inputSampleL = (drySampleL * dry) + ((mid+side) * wet);
+ inputSampleR = (drySampleR * dry) + ((mid-side) * wet);
+
+ //noise shaping to 32-bit floating point
+ if (fpFlip) {
+ fpTemp = inputSampleL;
+ fpNShapeLA = (fpNShapeLA*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLA;
+ fpTemp = inputSampleR;
+ fpNShapeRA = (fpNShapeRA*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRA;
+ }
+ else {
+ fpTemp = inputSampleL;
+ fpNShapeLB = (fpNShapeLB*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLB;
+ fpTemp = inputSampleR;
+ fpNShapeRB = (fpNShapeRB*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRB;
+ }
+ fpFlip = !fpFlip;
+ //end noise shaping on 32 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+}
+
+void Wider::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames)
+{
+ double* in1 = inputs[0];
+ double* in2 = inputs[1];
+ double* out1 = outputs[0];
+ double* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+ double fpTemp;
+ long double fpOld = 0.618033988749894848204586; //golden ratio!
+ long double fpNew = 1.0 - fpOld;
+
+ long double inputSampleL;
+ long double inputSampleR;
+ double drySampleL;
+ double drySampleR;
+ long double mid;
+ long double side;
+ double out;
+ double densityside = (A*2.0)-1.0;
+ double densitymid = (B*2.0)-1.0;
+ double wet = C;
+ double dry = 1.0 - wet;
+ wet *= 0.5; //we make mid-side by adding/subtracting both channels into each channel
+ //and that's why we gotta divide it by 2: otherwise everything's doubled. So, premultiply it to save an extra 'math'
+ double offset = (densityside-densitymid)/2;
+ if (offset > 0) offset = sin(offset);
+ if (offset < 0) offset = -sin(-offset);
+ offset = -(pow(offset,4) * 20 * overallscale);
+ int near = (int)floor(fabs(offset));
+ double farLevel = fabs(offset) - near;
+ int far = near + 1;
+ double nearLevel = 1.0 - farLevel;
+ double bridgerectifier;
+ //interpolating the sample
+
+ while (--sampleFrames >= 0)
+ {
+ inputSampleL = *in1;
+ inputSampleR = *in2;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ static int noisesource = 0;
+ //this declares a variable before anything else is compiled. It won't keep assigning
+ //it to 0 for every sample, it's as if the declaration doesn't exist in this context,
+ //but it lets me add this denormalization fix in a single place rather than updating
+ //it in three different locations. The variable isn't thread-safe but this is only
+ //a random seed and we can share it with whatever.
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL = applyresidue;
+ }
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ static int noisesource = 0;
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR = applyresidue;
+ //this denormalization routine produces a white noise at -300 dB which the noise
+ //shaping will interact with to produce a bipolar output, but the noise is actually
+ //all positive. That should stop any variables from going denormal, and the routine
+ //only kicks in if digital black is input. As a final touch, if you save to 24-bit
+ //the silence will return to being digital black again.
+ }
+ drySampleL = inputSampleL;
+ drySampleR = inputSampleR;
+ //assign working variables
+ mid = inputSampleL + inputSampleR;
+ side = inputSampleL - inputSampleR;
+ //assign mid and side. Now, High Impact code
+
+ if (densityside != 0.0)
+ {
+ out = fabs(densityside);
+ bridgerectifier = fabs(side)*1.57079633;
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ if (densityside > 0) bridgerectifier = sin(bridgerectifier);
+ else bridgerectifier = 1-cos(bridgerectifier);
+ //produce either boosted or starved version
+ if (side > 0) side = (side*(1-out))+(bridgerectifier*out);
+ else side = (side*(1-out))-(bridgerectifier*out);
+ //blend according to density control
+ }
+
+ if (densitymid != 0.0)
+ {
+ out = fabs(densitymid);
+ bridgerectifier = fabs(mid)*1.57079633;
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ if (densitymid > 0) bridgerectifier = sin(bridgerectifier);
+ else bridgerectifier = 1-cos(bridgerectifier);
+ //produce either boosted or starved version
+ if (mid > 0) mid = (mid*(1-out))+(bridgerectifier*out);
+ else mid = (mid*(1-out))-(bridgerectifier*out);
+ //blend according to density control
+ }
+
+ if (count < 1 || count > 2048) {count = 2048;}
+ if (offset > 0)
+ {
+ p[count+2048] = p[count] = mid;
+ mid = p[count+near]*nearLevel;
+ mid += p[count+far]*farLevel;
+ }
+
+ if (offset < 0)
+ {
+ p[count+2048] = p[count] = side;
+ side = p[count+near]*nearLevel;
+ side += p[count+far]*farLevel;
+ }
+ count -= 1;
+
+ inputSampleL = (drySampleL * dry) + ((mid+side) * wet);
+ inputSampleR = (drySampleR * dry) + ((mid-side) * wet);
+
+ //noise shaping to 64-bit floating point
+ if (fpFlip) {
+ fpTemp = inputSampleL;
+ fpNShapeLA = (fpNShapeLA*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLA;
+ fpTemp = inputSampleR;
+ fpNShapeRA = (fpNShapeRA*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRA;
+ }
+ else {
+ fpTemp = inputSampleL;
+ fpNShapeLB = (fpNShapeLB*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLB;
+ fpTemp = inputSampleR;
+ fpNShapeRB = (fpNShapeRB*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRB;
+ }
+ fpFlip = !fpFlip;
+ //end noise shaping on 64 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+} \ No newline at end of file