aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/WinVST/Spiral2/Spiral2Proc.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/WinVST/Spiral2/Spiral2Proc.cpp')
-rwxr-xr-xplugins/WinVST/Spiral2/Spiral2Proc.cpp289
1 files changed, 289 insertions, 0 deletions
diff --git a/plugins/WinVST/Spiral2/Spiral2Proc.cpp b/plugins/WinVST/Spiral2/Spiral2Proc.cpp
new file mode 100755
index 0000000..d309448
--- /dev/null
+++ b/plugins/WinVST/Spiral2/Spiral2Proc.cpp
@@ -0,0 +1,289 @@
+/* ========================================
+ * Spiral2 - Spiral2.h
+ * Copyright (c) 2016 airwindows, All rights reserved
+ * ======================================== */
+
+#ifndef __Spiral2_H
+#include "Spiral2.h"
+#endif
+
+void Spiral2::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames)
+{
+ float* in1 = inputs[0];
+ float* in2 = inputs[1];
+ float* out1 = outputs[0];
+ float* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+
+ double gain = pow(A*2.0,2.0);
+ double iirAmount = pow(B,3.0)/overallscale;
+ double presence = C;
+ double output = D;
+ double wet = E;
+
+ while (--sampleFrames >= 0)
+ {
+ long double inputSampleL = *in1;
+ long double inputSampleR = *in2;
+
+ static int noisesourceL = 0;
+ static int noisesourceR = 850010;
+ int residue;
+ double applyresidue;
+
+ noisesourceL = noisesourceL % 1700021; noisesourceL++;
+ residue = noisesourceL * noisesourceL;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL += applyresidue;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ inputSampleL -= applyresidue;
+ }
+
+ noisesourceR = noisesourceR % 1700021; noisesourceR++;
+ residue = noisesourceR * noisesourceR;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR += applyresidue;
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ inputSampleR -= applyresidue;
+ }
+ //for live air, we always apply the dither noise. Then, if our result is
+ //effectively digital black, we'll subtract it aSpiral2. We want a 'air' hiss
+ long double drySampleL = inputSampleL;
+ long double drySampleR = inputSampleR;
+
+ if (gain != 1.0) {
+ inputSampleL *= gain;
+ inputSampleR *= gain;
+ prevSampleL *= gain;
+ prevSampleR *= gain;
+ }
+
+ if (flip)
+ {
+ iirSampleAL = (iirSampleAL * (1 - iirAmount)) + (inputSampleL * iirAmount);
+ iirSampleAR = (iirSampleAR * (1 - iirAmount)) + (inputSampleR * iirAmount);
+ inputSampleL -= iirSampleAL;
+ inputSampleR -= iirSampleAR;
+ }
+ else
+ {
+ iirSampleBL = (iirSampleBL * (1 - iirAmount)) + (inputSampleL * iirAmount);
+ iirSampleBR = (iirSampleBR * (1 - iirAmount)) + (inputSampleR * iirAmount);
+ inputSampleL -= iirSampleBL;
+ inputSampleR -= iirSampleBR;
+ }
+ //highpass section
+
+ long double presenceSampleL = sin(inputSampleL * fabs(prevSampleL)) / ((prevSampleL == 0.0) ?1:fabs(prevSampleL));
+ long double presenceSampleR = sin(inputSampleR * fabs(prevSampleR)) / ((prevSampleR == 0.0) ?1:fabs(prevSampleR));
+ //change from first Spiral: delay of one sample on the scaling factor.
+ inputSampleL = sin(inputSampleL * fabs(inputSampleL)) / ((inputSampleL == 0.0) ?1:fabs(inputSampleL));
+ inputSampleR = sin(inputSampleR * fabs(inputSampleR)) / ((inputSampleR == 0.0) ?1:fabs(inputSampleR));
+
+ if (output < 1.0) {
+ inputSampleL *= output;
+ inputSampleR *= output;
+ presenceSampleL *= output;
+ presenceSampleR *= output;
+ }
+ if (presence > 0.0) {
+ inputSampleL = (inputSampleL * (1.0-presence)) + (presenceSampleL * presence);
+ inputSampleR = (inputSampleR * (1.0-presence)) + (presenceSampleR * presence);
+ }
+ if (wet < 1.0) {
+ inputSampleL = (drySampleL * (1.0-wet)) + (inputSampleL * wet);
+ inputSampleR = (drySampleR * (1.0-wet)) + (inputSampleR * wet);
+ }
+ //nice little output stage template: if we have another scale of floating point
+ //number, we really don't want to meaninglessly multiply that by 1.0.
+
+ prevSampleL = drySampleL;
+ prevSampleR = drySampleR;
+ flip = !flip;
+
+ //noise shaping to 32-bit floating point
+ float fpTemp = inputSampleL;
+ fpNShapeL += (inputSampleL-fpTemp);
+ inputSampleL += fpNShapeL;
+ //if this confuses you look at the wordlength for fpTemp :)
+ fpTemp = inputSampleR;
+ fpNShapeR += (inputSampleR-fpTemp);
+ inputSampleR += fpNShapeR;
+ //for deeper space and warmth, we try a non-oscillating noise shaping
+ //that is kind of ruthless: it will forever retain the rounding errors
+ //except we'll dial it back a hair at the end of every buffer processed
+ //end noise shaping on 32 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+ fpNShapeL *= 0.999999;
+ fpNShapeR *= 0.999999;
+ //we will just delicately dial back the FP noise shaping, not even every sample
+ //this is a good place to put subtle 'no runaway' calculations, though bear in mind
+ //that it will be called more often when you use shorter sample buffers in the DAW.
+ //So, very low latency operation will call these calculations more often.
+}
+
+void Spiral2::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames)
+{
+ double* in1 = inputs[0];
+ double* in2 = inputs[1];
+ double* out1 = outputs[0];
+ double* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+
+ double gain = pow(A*2.0,2.0);
+ double iirAmount = pow(B,3.0)/overallscale;
+ double presence = C;
+ double output = D;
+ double wet = E;
+
+
+ while (--sampleFrames >= 0)
+ {
+ long double inputSampleL = *in1;
+ long double inputSampleR = *in2;
+
+ static int noisesourceL = 0;
+ static int noisesourceR = 850010;
+ int residue;
+ double applyresidue;
+
+ noisesourceL = noisesourceL % 1700021; noisesourceL++;
+ residue = noisesourceL * noisesourceL;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL += applyresidue;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ inputSampleL -= applyresidue;
+ }
+
+ noisesourceR = noisesourceR % 1700021; noisesourceR++;
+ residue = noisesourceR * noisesourceR;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR += applyresidue;
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ inputSampleR -= applyresidue;
+ }
+ //for live air, we always apply the dither noise. Then, if our result is
+ //effectively digital black, we'll subtract it aSpiral2. We want a 'air' hiss
+ long double drySampleL = inputSampleL;
+ long double drySampleR = inputSampleR;
+
+ if (gain != 1.0) {
+ inputSampleL *= gain;
+ inputSampleR *= gain;
+ prevSampleL *= gain;
+ prevSampleR *= gain;
+ }
+
+ if (flip)
+ {
+ iirSampleAL = (iirSampleAL * (1 - iirAmount)) + (inputSampleL * iirAmount);
+ iirSampleAR = (iirSampleAR * (1 - iirAmount)) + (inputSampleR * iirAmount);
+ inputSampleL -= iirSampleAL;
+ inputSampleR -= iirSampleAR;
+ }
+ else
+ {
+ iirSampleBL = (iirSampleBL * (1 - iirAmount)) + (inputSampleL * iirAmount);
+ iirSampleBR = (iirSampleBR * (1 - iirAmount)) + (inputSampleR * iirAmount);
+ inputSampleL -= iirSampleBL;
+ inputSampleR -= iirSampleBR;
+ }
+ //highpass section
+
+ long double presenceSampleL = sin(inputSampleL * fabs(prevSampleL)) / ((prevSampleL == 0.0) ?1:fabs(prevSampleL));
+ long double presenceSampleR = sin(inputSampleR * fabs(prevSampleR)) / ((prevSampleR == 0.0) ?1:fabs(prevSampleR));
+ //change from first Spiral: delay of one sample on the scaling factor.
+ inputSampleL = sin(inputSampleL * fabs(inputSampleL)) / ((inputSampleL == 0.0) ?1:fabs(inputSampleL));
+ inputSampleR = sin(inputSampleR * fabs(inputSampleR)) / ((inputSampleR == 0.0) ?1:fabs(inputSampleR));
+
+ if (output < 1.0) {
+ inputSampleL *= output;
+ inputSampleR *= output;
+ presenceSampleL *= output;
+ presenceSampleR *= output;
+ }
+ if (presence > 0.0) {
+ inputSampleL = (inputSampleL * (1.0-presence)) + (presenceSampleL * presence);
+ inputSampleR = (inputSampleR * (1.0-presence)) + (presenceSampleR * presence);
+ }
+ if (wet < 1.0) {
+ inputSampleL = (drySampleL * (1.0-wet)) + (inputSampleL * wet);
+ inputSampleR = (drySampleR * (1.0-wet)) + (inputSampleR * wet);
+ }
+ //nice little output stage template: if we have another scale of floating point
+ //number, we really don't want to meaninglessly multiply that by 1.0.
+
+ prevSampleL = drySampleL;
+ prevSampleR = drySampleR;
+ flip = !flip;
+
+ //noise shaping to 64-bit floating point
+ double fpTemp = inputSampleL;
+ fpNShapeL += (inputSampleL-fpTemp);
+ inputSampleL += fpNShapeL;
+ //if this confuses you look at the wordlength for fpTemp :)
+ fpTemp = inputSampleR;
+ fpNShapeR += (inputSampleR-fpTemp);
+ inputSampleR += fpNShapeR;
+ //for deeper space and warmth, we try a non-oscillating noise shaping
+ //that is kind of ruthless: it will forever retain the rounding errors
+ //except we'll dial it back a hair at the end of every buffer processed
+ //end noise shaping on 64 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+ fpNShapeL *= 0.999999;
+ fpNShapeR *= 0.999999;
+ //we will just delicately dial back the FP noise shaping, not even every sample
+ //this is a good place to put subtle 'no runaway' calculations, though bear in mind
+ //that it will be called more often when you use shorter sample buffers in the DAW.
+ //So, very low latency operation will call these calculations more often.
+}