aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/WinVST/NC-17/NCSeventeenProc.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/WinVST/NC-17/NCSeventeenProc.cpp')
-rwxr-xr-xplugins/WinVST/NC-17/NCSeventeenProc.cpp721
1 files changed, 721 insertions, 0 deletions
diff --git a/plugins/WinVST/NC-17/NCSeventeenProc.cpp b/plugins/WinVST/NC-17/NCSeventeenProc.cpp
new file mode 100755
index 0000000..e124cb5
--- /dev/null
+++ b/plugins/WinVST/NC-17/NCSeventeenProc.cpp
@@ -0,0 +1,721 @@
+/* ========================================
+ * NCSeventeen - NCSeventeen.h
+ * Copyright (c) 2016 airwindows, All rights reserved
+ * ======================================== */
+
+#ifndef __NCSeventeen_H
+#include "NCSeventeen.h"
+#endif
+
+void NCSeventeen::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames)
+{
+ float* in1 = inputs[0];
+ float* in2 = inputs[1];
+ float* out1 = outputs[0];
+ float* out2 = outputs[1];
+
+ double inP2;
+ double chebyshev;
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+
+ double IIRscaleback = 0.0004716;
+ double bassScaleback = 0.0002364;
+ double trebleScaleback = 0.0005484;
+ double addBassBuss = 0.000243;
+ double addTrebBuss = 0.000407;
+ double addShortBuss = 0.000326;
+ IIRscaleback /= overallscale;
+ bassScaleback /= overallscale;
+ trebleScaleback /= overallscale;
+ addBassBuss /= overallscale;
+ addTrebBuss /= overallscale;
+ addShortBuss /= overallscale;
+ double limitingBass = 0.39;
+ double limitingTreb = 0.6;
+ double limiting = 0.36;
+ double maxfeedBass = 0.972;
+ double maxfeedTreb = 0.972;
+ double maxfeed = 0.975;
+ double bridgerectifier;
+ long double inputSampleL;
+ double lowSampleL = 0.0;
+ double highSampleL;
+ double distSampleL;
+ double minusSampleL;
+ double plusSampleL;
+ long double inputSampleR;
+ double lowSampleR = 0.0;
+ double highSampleR;
+ double distSampleR;
+ double minusSampleR;
+ double plusSampleR;
+ double gain = pow(10.0,(A*24.0)/20);
+ double outlevel = B;
+
+
+ while (--sampleFrames >= 0)
+ {
+ inputSampleL = *in1;
+ inputSampleR = *in2;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ static int noisesource = 0;
+ //this declares a variable before anything else is compiled. It won't keep assigning
+ //it to 0 for every sample, it's as if the declaration doesn't exist in this context,
+ //but it lets me add this denormalization fix in a single place rather than updating
+ //it in three different locations. The variable isn't thread-safe but this is only
+ //a random seed and we can share it with whatever.
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL = applyresidue;
+ }
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ static int noisesource = 0;
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR = applyresidue;
+ //this denormalization routine produces a white noise at -300 dB which the noise
+ //shaping will interact with to produce a bipolar output, but the noise is actually
+ //all positive. That should stop any variables from going denormal, and the routine
+ //only kicks in if digital black is input. As a final touch, if you save to 24-bit
+ //the silence will return to being digital black again.
+ }
+
+ inputSampleL *= gain;
+ inputSampleR *= gain;
+
+ if (flip)
+ {
+ iirSampleAL = (iirSampleAL * 0.9) + (inputSampleL * 0.1);
+ lowSampleL = iirSampleAL;
+ iirSampleAR = (iirSampleAR * 0.9) + (inputSampleR * 0.1);
+ lowSampleR = iirSampleAR;
+ }
+ else
+ {
+ iirSampleBL = (iirSampleBL * 0.9) + (inputSampleL * 0.1);
+ lowSampleL = iirSampleBL;
+ iirSampleBR = (iirSampleBR * 0.9) + (inputSampleR * 0.1);
+ lowSampleR = iirSampleBR;
+ }
+ highSampleL = inputSampleL - lowSampleL;
+ highSampleR = inputSampleR - lowSampleR;
+ flip = !flip;
+ //we now have two bands and the original source
+
+ inP2 = lowSampleL * lowSampleL;
+ if (inP2 > 1.0) inP2 = 1.0; if (inP2 < -1.0) inP2 = -1.0;
+ chebyshev = (2 * inP2);
+ chebyshev *= basslevL;
+ //second harmonic max +1
+ if (basslevL > 0) basslevL -= bassScaleback;
+ if (basslevL < 0) basslevL += bassScaleback;
+ //this is ShortBuss, IIRscaleback is the decay speed. *2 for second harmonic, and so on
+ bridgerectifier = fabs(lowSampleL);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (lowSampleL > 0.0) distSampleL = bridgerectifier;
+ else distSampleL = -bridgerectifier;
+ minusSampleL = lowSampleL - distSampleL;
+ plusSampleL = lowSampleL + distSampleL;
+ if (minusSampleL > maxfeedBass) minusSampleL = maxfeedBass;
+ if (plusSampleL > maxfeedBass) plusSampleL = maxfeedBass;
+ if (plusSampleL < -maxfeedBass) plusSampleL = -maxfeedBass;
+ if (minusSampleL < -maxfeedBass) minusSampleL = -maxfeedBass;
+ if (lowSampleL > distSampleL) basslevL += (minusSampleL*addBassBuss);
+ if (lowSampleL < -distSampleL) basslevL -= (plusSampleL*addBassBuss);
+ if (basslevL > 1.0) basslevL = 1.0;
+ if (basslevL < -1.0) basslevL = -1.0;
+ bridgerectifier = fabs(lowSampleL);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (lowSampleL > 0.0) lowSampleL = bridgerectifier;
+ else lowSampleL = -bridgerectifier;
+ //apply the distortion transform for reals
+ lowSampleL /= (1.0+fabs(basslevL*limitingBass));
+ lowSampleL += chebyshev;
+ //apply the correction measuresL
+
+ inP2 = lowSampleR * lowSampleR;
+ if (inP2 > 1.0) inP2 = 1.0; if (inP2 < -1.0) inP2 = -1.0;
+ chebyshev = (2 * inP2);
+ chebyshev *= basslevR;
+ //second harmonic max +1
+ if (basslevR > 0) basslevR -= bassScaleback;
+ if (basslevR < 0) basslevR += bassScaleback;
+ //this is ShortBuss, IIRscaleback is the decay speed. *2 for second harmonic, and so on
+ bridgerectifier = fabs(lowSampleR);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (lowSampleR > 0.0) distSampleR = bridgerectifier;
+ else distSampleR = -bridgerectifier;
+ minusSampleR = lowSampleR - distSampleR;
+ plusSampleR = lowSampleR + distSampleR;
+ if (minusSampleR > maxfeedBass) minusSampleR = maxfeedBass;
+ if (plusSampleR > maxfeedBass) plusSampleR = maxfeedBass;
+ if (plusSampleR < -maxfeedBass) plusSampleR = -maxfeedBass;
+ if (minusSampleR < -maxfeedBass) minusSampleR = -maxfeedBass;
+ if (lowSampleR > distSampleR) basslevR += (minusSampleR*addBassBuss);
+ if (lowSampleR < -distSampleR) basslevR -= (plusSampleR*addBassBuss);
+ if (basslevR > 1.0) basslevR = 1.0;
+ if (basslevR < -1.0) basslevR = -1.0;
+ bridgerectifier = fabs(lowSampleR);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (lowSampleR > 0.0) lowSampleR = bridgerectifier;
+ else lowSampleR = -bridgerectifier;
+ //apply the distortion transform for reals
+ lowSampleR /= (1.0+fabs(basslevR*limitingBass));
+ lowSampleR += chebyshev;
+ //apply the correction measuresR
+
+ inP2 = highSampleL * highSampleL;
+ if (inP2 > 1.0) inP2 = 1.0; if (inP2 < -1.0) inP2 = -1.0;
+ chebyshev = (2 * inP2);
+ chebyshev *= treblevL;
+ //second harmonic max +1
+ if (treblevL > 0) treblevL -= trebleScaleback;
+ if (treblevL < 0) treblevL += trebleScaleback;
+ //this is ShortBuss, IIRscaleback is the decay speed. *2 for second harmonic, and so on
+ bridgerectifier = fabs(highSampleL);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (highSampleL > 0.0) distSampleL = bridgerectifier;
+ else distSampleL = -bridgerectifier;
+ minusSampleL = highSampleL - distSampleL;
+ plusSampleL = highSampleL + distSampleL;
+ if (minusSampleL > maxfeedTreb) minusSampleL = maxfeedTreb;
+ if (plusSampleL > maxfeedTreb) plusSampleL = maxfeedTreb;
+ if (plusSampleL < -maxfeedTreb) plusSampleL = -maxfeedTreb;
+ if (minusSampleL < -maxfeedTreb) minusSampleL = -maxfeedTreb;
+ if (highSampleL > distSampleL) treblevL += (minusSampleL*addTrebBuss);
+ if (highSampleL < -distSampleL) treblevL -= (plusSampleL*addTrebBuss);
+ if (treblevL > 1.0) treblevL = 1.0;
+ if (treblevL < -1.0) treblevL = -1.0;
+ bridgerectifier = fabs(highSampleL);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (highSampleL > 0.0) highSampleL = bridgerectifier;
+ else highSampleL = -bridgerectifier;
+ //apply the distortion transform for reals
+ highSampleL /= (1.0+fabs(treblevL*limitingTreb));
+ highSampleL += chebyshev;
+ //apply the correction measuresL
+
+ inP2 = highSampleR * highSampleR;
+ if (inP2 > 1.0) inP2 = 1.0; if (inP2 < -1.0) inP2 = -1.0;
+ chebyshev = (2 * inP2);
+ chebyshev *= treblevR;
+ //second harmonic max +1
+ if (treblevR > 0) treblevR -= trebleScaleback;
+ if (treblevR < 0) treblevR += trebleScaleback;
+ //this is ShortBuss, IIRscaleback is the decay speed. *2 for second harmonic, and so on
+ bridgerectifier = fabs(highSampleR);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (highSampleR > 0.0) distSampleR = bridgerectifier;
+ else distSampleR = -bridgerectifier;
+ minusSampleR = highSampleR - distSampleR;
+ plusSampleR = highSampleR + distSampleR;
+ if (minusSampleR > maxfeedTreb) minusSampleR = maxfeedTreb;
+ if (plusSampleR > maxfeedTreb) plusSampleR = maxfeedTreb;
+ if (plusSampleR < -maxfeedTreb) plusSampleR = -maxfeedTreb;
+ if (minusSampleR < -maxfeedTreb) minusSampleR = -maxfeedTreb;
+ if (highSampleR > distSampleR) treblevR += (minusSampleR*addTrebBuss);
+ if (highSampleR < -distSampleR) treblevR -= (plusSampleR*addTrebBuss);
+ if (treblevR > 1.0) treblevR = 1.0;
+ if (treblevR < -1.0) treblevR = -1.0;
+ bridgerectifier = fabs(highSampleR);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (highSampleR > 0.0) highSampleR = bridgerectifier;
+ else highSampleR = -bridgerectifier;
+ //apply the distortion transform for reals
+ highSampleR /= (1.0+fabs(treblevR*limitingTreb));
+ highSampleR += chebyshev;
+ //apply the correction measuresR
+
+ inputSampleL = lowSampleL + highSampleL;
+ inputSampleR = lowSampleR + highSampleR;
+
+ inP2 = inputSampleL * inputSampleL;
+ if (inP2 > 1.0) inP2 = 1.0; if (inP2 < -1.0) inP2 = -1.0;
+ chebyshev = (2 * inP2);
+ chebyshev *= cheblevL;
+ //third harmonic max -1
+ if (cheblevL > 0) cheblevL -= (IIRscaleback);
+ if (cheblevL < 0) cheblevL += (IIRscaleback);
+ //this is ShortBuss, IIRscaleback is the decay speed. *2 for second harmonic, and so on
+ bridgerectifier = fabs(inputSampleL);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (inputSampleL > 0.0) distSampleL = bridgerectifier;
+ else distSampleL = -bridgerectifier;
+ minusSampleL = inputSampleL - distSampleL;
+ plusSampleL = inputSampleL + distSampleL;
+ if (minusSampleL > maxfeed) minusSampleL = maxfeed;
+ if (plusSampleL > maxfeed) plusSampleL = maxfeed;
+ if (plusSampleL < -maxfeed) plusSampleL = -maxfeed;
+ if (minusSampleL < -maxfeed) minusSampleL = -maxfeed;
+ if (inputSampleL > distSampleL) cheblevL += (minusSampleL*addShortBuss);
+ if (inputSampleL < -distSampleL) cheblevL -= (plusSampleL*addShortBuss);
+ if (cheblevL > 1.0) cheblevL = 1.0;
+ if (cheblevL < -1.0) cheblevL = -1.0;
+ bridgerectifier = fabs(inputSampleL);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (inputSampleL > 0.0) inputSampleL = bridgerectifier;
+ else inputSampleL = -bridgerectifier;
+ //apply the distortion transform for reals
+ inputSampleL /= (1.0+fabs(cheblevL*limiting));
+ inputSampleL += chebyshev;
+ //apply the correction measuresL
+
+ inP2 = inputSampleR * inputSampleR;
+ if (inP2 > 1.0) inP2 = 1.0; if (inP2 < -1.0) inP2 = -1.0;
+ chebyshev = (2 * inP2);
+ chebyshev *= cheblevR;
+ //third harmonic max -1
+ if (cheblevR > 0) cheblevR -= IIRscaleback;
+ if (cheblevR < 0) cheblevR += IIRscaleback;
+ //this is ShortBuss, IIRscaleback is the decay speed. *2 for second harmonic, and so on
+ bridgerectifier = fabs(inputSampleR);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (inputSampleR > 0.0) distSampleR = bridgerectifier;
+ else distSampleR = -bridgerectifier;
+ minusSampleR = inputSampleR - distSampleR;
+ plusSampleR = inputSampleR + distSampleR;
+ if (minusSampleR > maxfeed) minusSampleR = maxfeed;
+ if (plusSampleR > maxfeed) plusSampleR = maxfeed;
+ if (plusSampleR < -maxfeed) plusSampleR = -maxfeed;
+ if (minusSampleR < -maxfeed) minusSampleR = -maxfeed;
+ if (inputSampleR > distSampleR) cheblevR += (minusSampleR*addShortBuss);
+ if (inputSampleR < -distSampleR) cheblevR -= (plusSampleR*addShortBuss);
+ if (cheblevR > 1.0) cheblevR = 1.0;
+ if (cheblevR < -1.0) cheblevR = -1.0;
+ bridgerectifier = fabs(inputSampleR);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (inputSampleR > 0.0) inputSampleR = bridgerectifier;
+ else inputSampleR = -bridgerectifier;
+ //apply the distortion transform for reals
+ inputSampleR /= (1.0+fabs(cheblevR*limiting));
+ inputSampleR += chebyshev;
+ //apply the correction measuresR
+
+ if (outlevel < 1.0) {
+ inputSampleL *= outlevel;
+ inputSampleR *= outlevel;
+ }
+
+ if (inputSampleL > 0.95) inputSampleL = 0.95;
+ if (inputSampleL < -0.95) inputSampleL = -0.95;
+ if (inputSampleR > 0.95) inputSampleR = 0.95;
+ if (inputSampleR < -0.95) inputSampleR = -0.95;
+ //iron bar
+
+ //stereo 32 bit dither, made small and tidy.
+ int expon; frexpf((float)inputSampleL, &expon);
+ long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
+ inputSampleL += (dither-fpNShapeL); fpNShapeL = dither;
+ frexpf((float)inputSampleR, &expon);
+ dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
+ inputSampleR += (dither-fpNShapeR); fpNShapeR = dither;
+ //end 32 bit dither
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+}
+
+void NCSeventeen::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames)
+{
+ double* in1 = inputs[0];
+ double* in2 = inputs[1];
+ double* out1 = outputs[0];
+ double* out2 = outputs[1];
+
+ double inP2;
+ double chebyshev;
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+
+ double IIRscaleback = 0.0004716;
+ double bassScaleback = 0.0002364;
+ double trebleScaleback = 0.0005484;
+ double addBassBuss = 0.000243;
+ double addTrebBuss = 0.000407;
+ double addShortBuss = 0.000326;
+ IIRscaleback /= overallscale;
+ bassScaleback /= overallscale;
+ trebleScaleback /= overallscale;
+ addBassBuss /= overallscale;
+ addTrebBuss /= overallscale;
+ addShortBuss /= overallscale;
+ double limitingBass = 0.39;
+ double limitingTreb = 0.6;
+ double limiting = 0.36;
+ double maxfeedBass = 0.972;
+ double maxfeedTreb = 0.972;
+ double maxfeed = 0.975;
+ double bridgerectifier;
+ long double inputSampleL;
+ double lowSampleL = 0.0;
+ double highSampleL;
+ double distSampleL;
+ double minusSampleL;
+ double plusSampleL;
+ long double inputSampleR;
+ double lowSampleR = 0.0;
+ double highSampleR;
+ double distSampleR;
+ double minusSampleR;
+ double plusSampleR;
+ double gain = pow(10.0,(A*24.0)/20);
+ double outlevel = B;
+
+ while (--sampleFrames >= 0)
+ {
+ inputSampleL = *in1;
+ inputSampleR = *in2;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ static int noisesource = 0;
+ //this declares a variable before anything else is compiled. It won't keep assigning
+ //it to 0 for every sample, it's as if the declaration doesn't exist in this context,
+ //but it lets me add this denormalization fix in a single place rather than updating
+ //it in three different locations. The variable isn't thread-safe but this is only
+ //a random seed and we can share it with whatever.
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL = applyresidue;
+ }
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ static int noisesource = 0;
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR = applyresidue;
+ //this denormalization routine produces a white noise at -300 dB which the noise
+ //shaping will interact with to produce a bipolar output, but the noise is actually
+ //all positive. That should stop any variables from going denormal, and the routine
+ //only kicks in if digital black is input. As a final touch, if you save to 24-bit
+ //the silence will return to being digital black again.
+ }
+
+ inputSampleL *= gain;
+ inputSampleR *= gain;
+
+ if (flip)
+ {
+ iirSampleAL = (iirSampleAL * 0.9) + (inputSampleL * 0.1);
+ lowSampleL = iirSampleAL;
+ iirSampleAR = (iirSampleAR * 0.9) + (inputSampleR * 0.1);
+ lowSampleR = iirSampleAR;
+ }
+ else
+ {
+ iirSampleBL = (iirSampleBL * 0.9) + (inputSampleL * 0.1);
+ lowSampleL = iirSampleBL;
+ iirSampleBR = (iirSampleBR * 0.9) + (inputSampleR * 0.1);
+ lowSampleR = iirSampleBR;
+ }
+ highSampleL = inputSampleL - lowSampleL;
+ highSampleR = inputSampleR - lowSampleR;
+ flip = !flip;
+ //we now have two bands and the original source
+
+ inP2 = lowSampleL * lowSampleL;
+ if (inP2 > 1.0) inP2 = 1.0; if (inP2 < -1.0) inP2 = -1.0;
+ chebyshev = (2 * inP2);
+ chebyshev *= basslevL;
+ //second harmonic max +1
+ if (basslevL > 0) basslevL -= bassScaleback;
+ if (basslevL < 0) basslevL += bassScaleback;
+ //this is ShortBuss, IIRscaleback is the decay speed. *2 for second harmonic, and so on
+ bridgerectifier = fabs(lowSampleL);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (lowSampleL > 0.0) distSampleL = bridgerectifier;
+ else distSampleL = -bridgerectifier;
+ minusSampleL = lowSampleL - distSampleL;
+ plusSampleL = lowSampleL + distSampleL;
+ if (minusSampleL > maxfeedBass) minusSampleL = maxfeedBass;
+ if (plusSampleL > maxfeedBass) plusSampleL = maxfeedBass;
+ if (plusSampleL < -maxfeedBass) plusSampleL = -maxfeedBass;
+ if (minusSampleL < -maxfeedBass) minusSampleL = -maxfeedBass;
+ if (lowSampleL > distSampleL) basslevL += (minusSampleL*addBassBuss);
+ if (lowSampleL < -distSampleL) basslevL -= (plusSampleL*addBassBuss);
+ if (basslevL > 1.0) basslevL = 1.0;
+ if (basslevL < -1.0) basslevL = -1.0;
+ bridgerectifier = fabs(lowSampleL);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (lowSampleL > 0.0) lowSampleL = bridgerectifier;
+ else lowSampleL = -bridgerectifier;
+ //apply the distortion transform for reals
+ lowSampleL /= (1.0+fabs(basslevL*limitingBass));
+ lowSampleL += chebyshev;
+ //apply the correction measuresL
+
+ inP2 = lowSampleR * lowSampleR;
+ if (inP2 > 1.0) inP2 = 1.0; if (inP2 < -1.0) inP2 = -1.0;
+ chebyshev = (2 * inP2);
+ chebyshev *= basslevR;
+ //second harmonic max +1
+ if (basslevR > 0) basslevR -= bassScaleback;
+ if (basslevR < 0) basslevR += bassScaleback;
+ //this is ShortBuss, IIRscaleback is the decay speed. *2 for second harmonic, and so on
+ bridgerectifier = fabs(lowSampleR);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (lowSampleR > 0.0) distSampleR = bridgerectifier;
+ else distSampleR = -bridgerectifier;
+ minusSampleR = lowSampleR - distSampleR;
+ plusSampleR = lowSampleR + distSampleR;
+ if (minusSampleR > maxfeedBass) minusSampleR = maxfeedBass;
+ if (plusSampleR > maxfeedBass) plusSampleR = maxfeedBass;
+ if (plusSampleR < -maxfeedBass) plusSampleR = -maxfeedBass;
+ if (minusSampleR < -maxfeedBass) minusSampleR = -maxfeedBass;
+ if (lowSampleR > distSampleR) basslevR += (minusSampleR*addBassBuss);
+ if (lowSampleR < -distSampleR) basslevR -= (plusSampleR*addBassBuss);
+ if (basslevR > 1.0) basslevR = 1.0;
+ if (basslevR < -1.0) basslevR = -1.0;
+ bridgerectifier = fabs(lowSampleR);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (lowSampleR > 0.0) lowSampleR = bridgerectifier;
+ else lowSampleR = -bridgerectifier;
+ //apply the distortion transform for reals
+ lowSampleR /= (1.0+fabs(basslevR*limitingBass));
+ lowSampleR += chebyshev;
+ //apply the correction measuresR
+
+ inP2 = highSampleL * highSampleL;
+ if (inP2 > 1.0) inP2 = 1.0; if (inP2 < -1.0) inP2 = -1.0;
+ chebyshev = (2 * inP2);
+ chebyshev *= treblevL;
+ //second harmonic max +1
+ if (treblevL > 0) treblevL -= trebleScaleback;
+ if (treblevL < 0) treblevL += trebleScaleback;
+ //this is ShortBuss, IIRscaleback is the decay speed. *2 for second harmonic, and so on
+ bridgerectifier = fabs(highSampleL);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (highSampleL > 0.0) distSampleL = bridgerectifier;
+ else distSampleL = -bridgerectifier;
+ minusSampleL = highSampleL - distSampleL;
+ plusSampleL = highSampleL + distSampleL;
+ if (minusSampleL > maxfeedTreb) minusSampleL = maxfeedTreb;
+ if (plusSampleL > maxfeedTreb) plusSampleL = maxfeedTreb;
+ if (plusSampleL < -maxfeedTreb) plusSampleL = -maxfeedTreb;
+ if (minusSampleL < -maxfeedTreb) minusSampleL = -maxfeedTreb;
+ if (highSampleL > distSampleL) treblevL += (minusSampleL*addTrebBuss);
+ if (highSampleL < -distSampleL) treblevL -= (plusSampleL*addTrebBuss);
+ if (treblevL > 1.0) treblevL = 1.0;
+ if (treblevL < -1.0) treblevL = -1.0;
+ bridgerectifier = fabs(highSampleL);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (highSampleL > 0.0) highSampleL = bridgerectifier;
+ else highSampleL = -bridgerectifier;
+ //apply the distortion transform for reals
+ highSampleL /= (1.0+fabs(treblevL*limitingTreb));
+ highSampleL += chebyshev;
+ //apply the correction measuresL
+
+ inP2 = highSampleR * highSampleR;
+ if (inP2 > 1.0) inP2 = 1.0; if (inP2 < -1.0) inP2 = -1.0;
+ chebyshev = (2 * inP2);
+ chebyshev *= treblevR;
+ //second harmonic max +1
+ if (treblevR > 0) treblevR -= trebleScaleback;
+ if (treblevR < 0) treblevR += trebleScaleback;
+ //this is ShortBuss, IIRscaleback is the decay speed. *2 for second harmonic, and so on
+ bridgerectifier = fabs(highSampleR);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (highSampleR > 0.0) distSampleR = bridgerectifier;
+ else distSampleR = -bridgerectifier;
+ minusSampleR = highSampleR - distSampleR;
+ plusSampleR = highSampleR + distSampleR;
+ if (minusSampleR > maxfeedTreb) minusSampleR = maxfeedTreb;
+ if (plusSampleR > maxfeedTreb) plusSampleR = maxfeedTreb;
+ if (plusSampleR < -maxfeedTreb) plusSampleR = -maxfeedTreb;
+ if (minusSampleR < -maxfeedTreb) minusSampleR = -maxfeedTreb;
+ if (highSampleR > distSampleR) treblevR += (minusSampleR*addTrebBuss);
+ if (highSampleR < -distSampleR) treblevR -= (plusSampleR*addTrebBuss);
+ if (treblevR > 1.0) treblevR = 1.0;
+ if (treblevR < -1.0) treblevR = -1.0;
+ bridgerectifier = fabs(highSampleR);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (highSampleR > 0.0) highSampleR = bridgerectifier;
+ else highSampleR = -bridgerectifier;
+ //apply the distortion transform for reals
+ highSampleR /= (1.0+fabs(treblevR*limitingTreb));
+ highSampleR += chebyshev;
+ //apply the correction measuresR
+
+ inputSampleL = lowSampleL + highSampleL;
+ inputSampleR = lowSampleR + highSampleR;
+
+ inP2 = inputSampleL * inputSampleL;
+ if (inP2 > 1.0) inP2 = 1.0; if (inP2 < -1.0) inP2 = -1.0;
+ chebyshev = (2 * inP2);
+ chebyshev *= cheblevL;
+ //third harmonic max -1
+ if (cheblevL > 0) cheblevL -= (IIRscaleback);
+ if (cheblevL < 0) cheblevL += (IIRscaleback);
+ //this is ShortBuss, IIRscaleback is the decay speed. *2 for second harmonic, and so on
+ bridgerectifier = fabs(inputSampleL);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (inputSampleL > 0.0) distSampleL = bridgerectifier;
+ else distSampleL = -bridgerectifier;
+ minusSampleL = inputSampleL - distSampleL;
+ plusSampleL = inputSampleL + distSampleL;
+ if (minusSampleL > maxfeed) minusSampleL = maxfeed;
+ if (plusSampleL > maxfeed) plusSampleL = maxfeed;
+ if (plusSampleL < -maxfeed) plusSampleL = -maxfeed;
+ if (minusSampleL < -maxfeed) minusSampleL = -maxfeed;
+ if (inputSampleL > distSampleL) cheblevL += (minusSampleL*addShortBuss);
+ if (inputSampleL < -distSampleL) cheblevL -= (plusSampleL*addShortBuss);
+ if (cheblevL > 1.0) cheblevL = 1.0;
+ if (cheblevL < -1.0) cheblevL = -1.0;
+ bridgerectifier = fabs(inputSampleL);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (inputSampleL > 0.0) inputSampleL = bridgerectifier;
+ else inputSampleL = -bridgerectifier;
+ //apply the distortion transform for reals
+ inputSampleL /= (1.0+fabs(cheblevL*limiting));
+ inputSampleL += chebyshev;
+ //apply the correction measuresL
+
+ inP2 = inputSampleR * inputSampleR;
+ if (inP2 > 1.0) inP2 = 1.0; if (inP2 < -1.0) inP2 = -1.0;
+ chebyshev = (2 * inP2);
+ chebyshev *= cheblevR;
+ //third harmonic max -1
+ if (cheblevR > 0) cheblevR -= IIRscaleback;
+ if (cheblevR < 0) cheblevR += IIRscaleback;
+ //this is ShortBuss, IIRscaleback is the decay speed. *2 for second harmonic, and so on
+ bridgerectifier = fabs(inputSampleR);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (inputSampleR > 0.0) distSampleR = bridgerectifier;
+ else distSampleR = -bridgerectifier;
+ minusSampleR = inputSampleR - distSampleR;
+ plusSampleR = inputSampleR + distSampleR;
+ if (minusSampleR > maxfeed) minusSampleR = maxfeed;
+ if (plusSampleR > maxfeed) plusSampleR = maxfeed;
+ if (plusSampleR < -maxfeed) plusSampleR = -maxfeed;
+ if (minusSampleR < -maxfeed) minusSampleR = -maxfeed;
+ if (inputSampleR > distSampleR) cheblevR += (minusSampleR*addShortBuss);
+ if (inputSampleR < -distSampleR) cheblevR -= (plusSampleR*addShortBuss);
+ if (cheblevR > 1.0) cheblevR = 1.0;
+ if (cheblevR < -1.0) cheblevR = -1.0;
+ bridgerectifier = fabs(inputSampleR);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (inputSampleR > 0.0) inputSampleR = bridgerectifier;
+ else inputSampleR = -bridgerectifier;
+ //apply the distortion transform for reals
+ inputSampleR /= (1.0+fabs(cheblevR*limiting));
+ inputSampleR += chebyshev;
+ //apply the correction measuresR
+
+ if (outlevel < 1.0) {
+ inputSampleL *= outlevel;
+ inputSampleR *= outlevel;
+ }
+
+ if (inputSampleL > 0.95) inputSampleL = 0.95;
+ if (inputSampleL < -0.95) inputSampleL = -0.95;
+ if (inputSampleR > 0.95) inputSampleR = 0.95;
+ if (inputSampleR < -0.95) inputSampleR = -0.95;
+ //iron bar
+
+ //stereo 64 bit dither, made small and tidy.
+ int expon; frexp((double)inputSampleL, &expon);
+ long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
+ dither /= 536870912.0; //needs this to scale to 64 bit zone
+ inputSampleL += (dither-fpNShapeL); fpNShapeL = dither;
+ frexp((double)inputSampleR, &expon);
+ dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
+ dither /= 536870912.0; //needs this to scale to 64 bit zone
+ inputSampleR += (dither-fpNShapeR); fpNShapeR = dither;
+ //end 64 bit dither
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+} \ No newline at end of file