aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/WinVST/Gatelope/GatelopeProc.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/WinVST/Gatelope/GatelopeProc.cpp')
-rwxr-xr-xplugins/WinVST/Gatelope/GatelopeProc.cpp436
1 files changed, 436 insertions, 0 deletions
diff --git a/plugins/WinVST/Gatelope/GatelopeProc.cpp b/plugins/WinVST/Gatelope/GatelopeProc.cpp
new file mode 100755
index 0000000..dc81def
--- /dev/null
+++ b/plugins/WinVST/Gatelope/GatelopeProc.cpp
@@ -0,0 +1,436 @@
+/* ========================================
+ * Gatelope - Gatelope.h
+ * Copyright (c) 2016 airwindows, All rights reserved
+ * ======================================== */
+
+#ifndef __Gatelope_H
+#include "Gatelope.h"
+#endif
+
+void Gatelope::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames)
+{
+ float* in1 = inputs[0];
+ float* in2 = inputs[1];
+ float* out1 = outputs[0];
+ float* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+ //speed settings around release
+ double threshold = pow(A,2);
+ //gain settings around threshold
+ double trebledecay = pow(1.0-B,2)/4196.0;
+ double bassdecay = pow(1.0-C,2)/8192.0;
+ double slowAttack = (pow(D,3)*3)+0.003;
+ double wet = E;
+ slowAttack /= overallscale;
+ trebledecay /= overallscale;
+ bassdecay /= overallscale;
+ trebledecay += 1.0;
+ bassdecay += 1.0;
+ double attackSpeed;
+ double highestSample;
+ //this VST version comes from the AU, Gatelinked, because it's stereo.
+ //if used on a mono track it'll act like the mono N to N
+
+ while (--sampleFrames >= 0)
+ {
+ long double inputSampleL = *in1;
+ long double inputSampleR = *in2;
+
+ static int noisesourceL = 0;
+ static int noisesourceR = 850010;
+ int residue;
+ double applyresidue;
+
+ noisesourceL = noisesourceL % 1700021; noisesourceL++;
+ residue = noisesourceL * noisesourceL;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL += applyresidue;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ inputSampleL -= applyresidue;
+ }
+
+ noisesourceR = noisesourceR % 1700021; noisesourceR++;
+ residue = noisesourceR * noisesourceR;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR += applyresidue;
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ inputSampleR -= applyresidue;
+ }
+ //for live air, we always apply the dither noise. Then, if our result is
+ //effectively digital black, we'll subtract it again. We want a 'air' hiss
+ double drySampleL = inputSampleL;
+ double drySampleR = inputSampleR;
+
+ if (fabs(inputSampleL) > fabs(inputSampleR)) {
+ attackSpeed = slowAttack - (fabs(inputSampleL)*slowAttack*0.5);
+ highestSample = fabs(inputSampleL);
+ } else {
+ attackSpeed = slowAttack - (fabs(inputSampleR)*slowAttack*0.5); //we're triggering off the highest amplitude
+ highestSample = fabs(inputSampleR); //and making highestSample the abs() of that amplitude
+ }
+
+ if (attackSpeed < 0.0) attackSpeed = 0.0;
+ //softening onset click depending on how hard we're getting it
+
+ if (flip)
+ {
+ if (highestSample > threshold)
+ {
+ treblefreq += attackSpeed;
+ if (treblefreq > 1.0) treblefreq = 1.0;
+ bassfreq -= attackSpeed;
+ bassfreq -= attackSpeed;
+ if (bassfreq < 0.0) bassfreq = 0.0;
+ iirLowpassAL = iirLowpassBL = inputSampleL;
+ iirHighpassAL = iirHighpassBL = 0.0;
+ iirLowpassAR = iirLowpassBR = inputSampleR;
+ iirHighpassAR = iirHighpassBR = 0.0;
+ }
+ else
+ {
+ treblefreq -= bassfreq;
+ treblefreq /= trebledecay;
+ treblefreq += bassfreq;
+ bassfreq -= treblefreq;
+ bassfreq /= bassdecay;
+ bassfreq += treblefreq;
+ }
+
+ if (treblefreq >= 1.0) {
+ iirLowpassAL = inputSampleL;
+ iirLowpassAR = inputSampleR;
+ } else {
+ iirLowpassAL = (iirLowpassAL * (1.0 - treblefreq)) + (inputSampleL * treblefreq);
+ iirLowpassAR = (iirLowpassAR * (1.0 - treblefreq)) + (inputSampleR * treblefreq);
+ }
+
+ if (bassfreq > 0.0) {
+ iirHighpassAL = (iirHighpassAL * (1.0 - bassfreq)) + (inputSampleL * bassfreq);
+ iirHighpassAR = (iirHighpassAR * (1.0 - bassfreq)) + (inputSampleR * bassfreq);
+ } else {
+ iirHighpassAL = 0.0;
+ iirHighpassAR = 0.0;
+ }
+
+ if (treblefreq > bassfreq) {
+ inputSampleL = (iirLowpassAL - iirHighpassAL);
+ inputSampleR = (iirLowpassAR - iirHighpassAR);
+ } else {
+ inputSampleL = 0.0;
+ inputSampleR = 0.0;
+ }
+ }
+ else
+ {
+ if (highestSample > threshold)
+ {
+ treblefreq += attackSpeed;
+ if (treblefreq > 1.0) treblefreq = 1.0;
+ bassfreq -= attackSpeed;
+ bassfreq -= attackSpeed;
+ if (bassfreq < 0.0) bassfreq = 0.0;
+ iirLowpassAL = iirLowpassBL = inputSampleL;
+ iirHighpassAL = iirHighpassBL = 0.0;
+ iirLowpassAR = iirLowpassBR = inputSampleR;
+ iirHighpassAR = iirHighpassBR = 0.0;
+ }
+ else
+ {
+ treblefreq -= bassfreq;
+ treblefreq /= trebledecay;
+ treblefreq += bassfreq;
+ bassfreq -= treblefreq;
+ bassfreq /= bassdecay;
+ bassfreq += treblefreq;
+ }
+
+ if (treblefreq >= 1.0) {
+ iirLowpassBL = inputSampleL;
+ iirLowpassBR = inputSampleR;
+ } else {
+ iirLowpassBL = (iirLowpassBL * (1.0 - treblefreq)) + (inputSampleL * treblefreq);
+ iirLowpassBR = (iirLowpassBR * (1.0 - treblefreq)) + (inputSampleR * treblefreq);
+ }
+
+ if (bassfreq > 0.0) {
+ iirHighpassBL = (iirHighpassBL * (1.0 - bassfreq)) + (inputSampleL * bassfreq);
+ iirHighpassBR = (iirHighpassBR * (1.0 - bassfreq)) + (inputSampleR * bassfreq);
+ } else {
+ iirHighpassBL = 0.0;
+ iirHighpassBR = 0.0;
+ }
+
+ if (treblefreq > bassfreq) {
+ inputSampleL = (iirLowpassBL - iirHighpassBL);
+ inputSampleR = (iirLowpassBR - iirHighpassBR);
+ } else {
+ inputSampleL = 0.0;
+ inputSampleR = 0.0;
+ }
+ }
+ //done full gated envelope filtered effect
+ inputSampleL = ((1-wet)*drySampleL)+(wet*inputSampleL);
+ inputSampleR = ((1-wet)*drySampleR)+(wet*inputSampleR);
+ //we're going to set up a dry/wet control instead of a min. threshold
+
+ flip = !flip;
+
+ //noise shaping to 32-bit floating point
+ float fpTemp = inputSampleL;
+ fpNShapeL += (inputSampleL-fpTemp);
+ inputSampleL += fpNShapeL;
+ //if this confuses you look at the wordlength for fpTemp :)
+ fpTemp = inputSampleR;
+ fpNShapeR += (inputSampleR-fpTemp);
+ inputSampleR += fpNShapeR;
+ //for deeper space and warmth, we try a non-oscillating noise shaping
+ //that is kind of ruthless: it will forever retain the rounding errors
+ //except we'll dial it back a hair at the end of every buffer processed
+ //end noise shaping on 32 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+ fpNShapeL *= 0.999999;
+ fpNShapeR *= 0.999999;
+ //we will just delicately dial back the FP noise shaping, not even every sample
+ //this is a good place to put subtle 'no runaway' calculations, though bear in mind
+ //that it will be called more often when you use shorter sample buffers in the DAW.
+ //So, very low latency operation will call these calculations more often.
+}
+
+void Gatelope::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames)
+{
+ double* in1 = inputs[0];
+ double* in2 = inputs[1];
+ double* out1 = outputs[0];
+ double* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+ //speed settings around release
+ double threshold = pow(A,2);
+ //gain settings around threshold
+ double trebledecay = pow(1.0-B,2)/4196.0;
+ double bassdecay = pow(1.0-C,2)/8192.0;
+ double slowAttack = (pow(D,3)*3)+0.003;
+ double wet = E;
+ slowAttack /= overallscale;
+ trebledecay /= overallscale;
+ bassdecay /= overallscale;
+ trebledecay += 1.0;
+ bassdecay += 1.0;
+ double attackSpeed;
+ double highestSample;
+ //this VST version comes from the AU, Gatelinked, because it's stereo.
+ //if used on a mono track it'll act like the mono N to N
+
+ while (--sampleFrames >= 0)
+ {
+ long double inputSampleL = *in1;
+ long double inputSampleR = *in2;
+
+ static int noisesourceL = 0;
+ static int noisesourceR = 850010;
+ int residue;
+ double applyresidue;
+
+ noisesourceL = noisesourceL % 1700021; noisesourceL++;
+ residue = noisesourceL * noisesourceL;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL += applyresidue;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ inputSampleL -= applyresidue;
+ }
+
+ noisesourceR = noisesourceR % 1700021; noisesourceR++;
+ residue = noisesourceR * noisesourceR;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR += applyresidue;
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ inputSampleR -= applyresidue;
+ }
+ //for live air, we always apply the dither noise. Then, if our result is
+ //effectively digital black, we'll subtract it again. We want a 'air' hiss
+ double drySampleL = inputSampleL;
+ double drySampleR = inputSampleR;
+
+ if (fabs(inputSampleL) > fabs(inputSampleR)) {
+ attackSpeed = slowAttack - (fabs(inputSampleL)*slowAttack*0.5);
+ highestSample = fabs(inputSampleL);
+ } else {
+ attackSpeed = slowAttack - (fabs(inputSampleR)*slowAttack*0.5); //we're triggering off the highest amplitude
+ highestSample = fabs(inputSampleR); //and making highestSample the abs() of that amplitude
+ }
+
+ if (attackSpeed < 0.0) attackSpeed = 0.0;
+ //softening onset click depending on how hard we're getting it
+
+ if (flip)
+ {
+ if (highestSample > threshold)
+ {
+ treblefreq += attackSpeed;
+ if (treblefreq > 1.0) treblefreq = 1.0;
+ bassfreq -= attackSpeed;
+ bassfreq -= attackSpeed;
+ if (bassfreq < 0.0) bassfreq = 0.0;
+ iirLowpassAL = iirLowpassBL = inputSampleL;
+ iirHighpassAL = iirHighpassBL = 0.0;
+ iirLowpassAR = iirLowpassBR = inputSampleR;
+ iirHighpassAR = iirHighpassBR = 0.0;
+ }
+ else
+ {
+ treblefreq -= bassfreq;
+ treblefreq /= trebledecay;
+ treblefreq += bassfreq;
+ bassfreq -= treblefreq;
+ bassfreq /= bassdecay;
+ bassfreq += treblefreq;
+ }
+
+ if (treblefreq >= 1.0) {
+ iirLowpassAL = inputSampleL;
+ iirLowpassAR = inputSampleR;
+ } else {
+ iirLowpassAL = (iirLowpassAL * (1.0 - treblefreq)) + (inputSampleL * treblefreq);
+ iirLowpassAR = (iirLowpassAR * (1.0 - treblefreq)) + (inputSampleR * treblefreq);
+ }
+
+ if (bassfreq > 0.0) {
+ iirHighpassAL = (iirHighpassAL * (1.0 - bassfreq)) + (inputSampleL * bassfreq);
+ iirHighpassAR = (iirHighpassAR * (1.0 - bassfreq)) + (inputSampleR * bassfreq);
+ } else {
+ iirHighpassAL = 0.0;
+ iirHighpassAR = 0.0;
+ }
+
+ if (treblefreq > bassfreq) {
+ inputSampleL = (iirLowpassAL - iirHighpassAL);
+ inputSampleR = (iirLowpassAR - iirHighpassAR);
+ } else {
+ inputSampleL = 0.0;
+ inputSampleR = 0.0;
+ }
+ }
+ else
+ {
+ if (highestSample > threshold)
+ {
+ treblefreq += attackSpeed;
+ if (treblefreq > 1.0) treblefreq = 1.0;
+ bassfreq -= attackSpeed;
+ bassfreq -= attackSpeed;
+ if (bassfreq < 0.0) bassfreq = 0.0;
+ iirLowpassAL = iirLowpassBL = inputSampleL;
+ iirHighpassAL = iirHighpassBL = 0.0;
+ iirLowpassAR = iirLowpassBR = inputSampleR;
+ iirHighpassAR = iirHighpassBR = 0.0;
+ }
+ else
+ {
+ treblefreq -= bassfreq;
+ treblefreq /= trebledecay;
+ treblefreq += bassfreq;
+ bassfreq -= treblefreq;
+ bassfreq /= bassdecay;
+ bassfreq += treblefreq;
+ }
+
+ if (treblefreq >= 1.0) {
+ iirLowpassBL = inputSampleL;
+ iirLowpassBR = inputSampleR;
+ } else {
+ iirLowpassBL = (iirLowpassBL * (1.0 - treblefreq)) + (inputSampleL * treblefreq);
+ iirLowpassBR = (iirLowpassBR * (1.0 - treblefreq)) + (inputSampleR * treblefreq);
+ }
+
+ if (bassfreq > 0.0) {
+ iirHighpassBL = (iirHighpassBL * (1.0 - bassfreq)) + (inputSampleL * bassfreq);
+ iirHighpassBR = (iirHighpassBR * (1.0 - bassfreq)) + (inputSampleR * bassfreq);
+ } else {
+ iirHighpassBL = 0.0;
+ iirHighpassBR = 0.0;
+ }
+
+ if (treblefreq > bassfreq) {
+ inputSampleL = (iirLowpassBL - iirHighpassBL);
+ inputSampleR = (iirLowpassBR - iirHighpassBR);
+ } else {
+ inputSampleL = 0.0;
+ inputSampleR = 0.0;
+ }
+ }
+ //done full gated envelope filtered effect
+ inputSampleL = ((1-wet)*drySampleL)+(wet*inputSampleL);
+ inputSampleR = ((1-wet)*drySampleR)+(wet*inputSampleR);
+ //we're going to set up a dry/wet control instead of a min. threshold
+
+ flip = !flip;
+
+ //noise shaping to 64-bit floating point
+ double fpTemp = inputSampleL;
+ fpNShapeL += (inputSampleL-fpTemp);
+ inputSampleL += fpNShapeL;
+ //if this confuses you look at the wordlength for fpTemp :)
+ fpTemp = inputSampleR;
+ fpNShapeR += (inputSampleR-fpTemp);
+ inputSampleR += fpNShapeR;
+ //for deeper space and warmth, we try a non-oscillating noise shaping
+ //that is kind of ruthless: it will forever retain the rounding errors
+ //except we'll dial it back a hair at the end of every buffer processed
+ //end noise shaping on 64 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+ fpNShapeL *= 0.999999;
+ fpNShapeR *= 0.999999;
+ //we will just delicately dial back the FP noise shaping, not even every sample
+ //this is a good place to put subtle 'no runaway' calculations, though bear in mind
+ //that it will be called more often when you use shorter sample buffers in the DAW.
+ //So, very low latency operation will call these calculations more often.
+}