aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/WinVST/Desk4/Desk4Proc.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/WinVST/Desk4/Desk4Proc.cpp')
-rwxr-xr-xplugins/WinVST/Desk4/Desk4Proc.cpp512
1 files changed, 512 insertions, 0 deletions
diff --git a/plugins/WinVST/Desk4/Desk4Proc.cpp b/plugins/WinVST/Desk4/Desk4Proc.cpp
new file mode 100755
index 0000000..515436c
--- /dev/null
+++ b/plugins/WinVST/Desk4/Desk4Proc.cpp
@@ -0,0 +1,512 @@
+/* ========================================
+ * Desk4 - Desk4.h
+ * Copyright (c) 2016 airwindows, All rights reserved
+ * ======================================== */
+
+#ifndef __Desk4_H
+#include "Desk4.h"
+#endif
+
+void Desk4::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames)
+{
+ float* in1 = inputs[0];
+ float* in2 = inputs[1];
+ float* out1 = outputs[0];
+ float* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+ float fpTemp;
+ long double fpOld = 0.618033988749894848204586; //golden ratio!
+ long double fpNew = 1.0 - fpOld;
+
+ double gain = (pow(A,2)*10)+0.0001;
+ double gaintrim = (pow(A,2)*2)+1.0;
+ double slewgain = (pow(B,3)*40)+0.0001;
+ double prevslew = 0.105;
+ double intensity = (pow(C,6)*15)+0.0001;
+ double depthA = (pow(D,4)*940)+0.00001;
+ int offsetA = (int)(depthA * overallscale);
+ if (offsetA < 1) offsetA = 1;
+ if (offsetA > 4880) offsetA = 4880;
+ double balanceB = 0.0001;
+ slewgain *= overallscale;
+ prevslew *= overallscale;
+ balanceB /= overallscale;
+ double outputgain = E;
+ double wet = F;
+ double dry = 1.0 - wet;
+
+ double clampL;
+ double clampR;
+ double thicknessL;
+ double thicknessR;
+ double out;
+ double balanceA = 1.0 - balanceB;
+ double bridgerectifier;
+ double slewL;
+ double slewR;
+ double combSampleL;
+ double combSampleR;
+ double drySampleL;
+ double drySampleR;
+ long double inputSampleL;
+ long double inputSampleR;
+
+ while (--sampleFrames >= 0)
+ {
+ inputSampleL = *in1;
+ inputSampleR = *in2;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ static int noisesource = 0;
+ //this declares a variable before anything else is compiled. It won't keep assigning
+ //it to 0 for every sample, it's as if the declaration doesn't exist in this context,
+ //but it lets me add this denormalization fix in a single place rather than updating
+ //it in three different locations. The variable isn't thread-safe but this is only
+ //a random seed and we can share it with whatever.
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL = applyresidue;
+ }
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ static int noisesource = 0;
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR = applyresidue;
+ //this denormalization routine produces a white noise at -300 dB which the noise
+ //shaping will interact with to produce a bipolar output, but the noise is actually
+ //all positive. That should stop any variables from going denormal, and the routine
+ //only kicks in if digital black is input. As a final touch, if you save to 24-bit
+ //the silence will return to being digital black again.
+ }
+ drySampleL = inputSampleL;
+ drySampleR = inputSampleR;
+
+ if (gcount < 0 || gcount > 4900) {gcount = 4900;}
+
+ dL[gcount+4900] = dL[gcount] = fabs(inputSampleL)*intensity;
+ controlL += (dL[gcount] / offsetA);
+ controlL -= (dL[gcount+offsetA] / offsetA);
+ controlL -= 0.000001;
+ clampL = 1;
+ if (controlL < 0) {controlL = 0;}
+ if (controlL > 1) {clampL -= (controlL - 1); controlL = 1;}
+ if (clampL < 0.5) {clampL = 0.5;}
+
+ dR[gcount+4900] = dR[gcount] = fabs(inputSampleR)*intensity;
+ controlR += (dR[gcount] / offsetA);
+ controlR -= (dR[gcount+offsetA] / offsetA);
+ controlR -= 0.000001;
+ clampR = 1;
+ if (controlR < 0) {controlR = 0;}
+ if (controlR > 1) {clampR -= (controlR - 1); controlR = 1;}
+ if (clampR < 0.5) {clampR = 0.5;}
+
+
+ gcount--;
+ //control = 0 to 1
+ thicknessL = ((1.0 - controlL) * 2.0) - 1.0;
+ thicknessR = ((1.0 - controlR) * 2.0) - 1.0;
+
+ out = fabs(thicknessL);
+ bridgerectifier = fabs(inputSampleL);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ if (thicknessL > 0) bridgerectifier = sin(bridgerectifier);
+ else bridgerectifier = 1-cos(bridgerectifier);
+ //produce either boosted or starved version
+ if (inputSampleL > 0) inputSampleL = (inputSampleL*(1-out))+(bridgerectifier*out);
+ else inputSampleL = (inputSampleL*(1-out))-(bridgerectifier*out);
+ //blend according to density control
+
+ out = fabs(thicknessR);
+ bridgerectifier = fabs(inputSampleR);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ if (thicknessR > 0) bridgerectifier = sin(bridgerectifier);
+ else bridgerectifier = 1-cos(bridgerectifier);
+ //produce either boosted or starved version
+ if (inputSampleR > 0) inputSampleR = (inputSampleR*(1-out))+(bridgerectifier*out);
+ else inputSampleR = (inputSampleR*(1-out))-(bridgerectifier*out);
+ //blend according to density control
+
+ inputSampleL *= clampL;
+ inputSampleR *= clampR;
+
+ slewL = inputSampleL - lastSampleL;
+ lastSampleL = inputSampleL;
+ //Set up direct reference for slew
+
+ slewR = inputSampleR - lastSampleR;
+ lastSampleR = inputSampleR;
+ //Set up direct reference for slew
+
+ bridgerectifier = fabs(slewL*slewgain);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.0;
+ else bridgerectifier = sin(bridgerectifier);
+ if (slewL > 0) slewL = bridgerectifier/slewgain;
+ else slewL = -(bridgerectifier/slewgain);
+
+ bridgerectifier = fabs(slewR*slewgain);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.0;
+ else bridgerectifier = sin(bridgerectifier);
+ if (slewR > 0) slewR = bridgerectifier/slewgain;
+ else slewR = -(bridgerectifier/slewgain);
+
+ inputSampleL = (lastOutSampleL*balanceA) + (lastSampleL*balanceB) + slewL;
+ //go from last slewed, but include some raw values
+ lastOutSampleL = inputSampleL;
+ //Set up slewed reference
+
+ inputSampleR = (lastOutSampleR*balanceA) + (lastSampleR*balanceB) + slewR;
+ //go from last slewed, but include some raw values
+ lastOutSampleR = inputSampleR;
+ //Set up slewed reference
+
+ combSampleL = fabs(drySampleL*lastSampleL);
+ if (combSampleL > 1.0) combSampleL = 1.0;
+ //bailout for very high input gains
+
+ combSampleR = fabs(drySampleR*lastSampleR);
+ if (combSampleR > 1.0) combSampleR = 1.0;
+ //bailout for very high input gains
+
+ inputSampleL -= (lastSlewL * combSampleL * prevslew);
+ lastSlewL = slewL;
+ //slew interaction with previous slew
+
+ inputSampleR -= (lastSlewR * combSampleR * prevslew);
+ lastSlewR = slewR;
+ //slew interaction with previous slew
+
+ inputSampleL *= gain;
+ bridgerectifier = fabs(inputSampleL);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.0;
+ else bridgerectifier = sin(bridgerectifier);
+ if (inputSampleL > 0) inputSampleL = bridgerectifier;
+ else inputSampleL = -bridgerectifier;
+ //drive section
+ inputSampleL /= gain;
+ inputSampleL *= gaintrim;
+ //end of Desk section
+
+ inputSampleR *= gain;
+ bridgerectifier = fabs(inputSampleR);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.0;
+ else bridgerectifier = sin(bridgerectifier);
+ if (inputSampleR > 0) inputSampleR = bridgerectifier;
+ else inputSampleR = -bridgerectifier;
+ //drive section
+ inputSampleR /= gain;
+ inputSampleR *= gaintrim;
+ //end of Desk section
+
+ if (outputgain != 1.0) {
+ inputSampleL *= outputgain;
+ inputSampleR *= outputgain;
+ }
+
+ if (wet !=1.0) {
+ inputSampleL = (inputSampleL * wet) + (drySampleL * dry);
+ inputSampleR = (inputSampleR * wet) + (drySampleR * dry);
+ }
+
+
+ //noise shaping to 32-bit floating point
+ if (fpFlip) {
+ fpTemp = inputSampleL;
+ fpNShapeLA = (fpNShapeLA*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLA;
+ fpTemp = inputSampleR;
+ fpNShapeRA = (fpNShapeRA*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRA;
+ }
+ else {
+ fpTemp = inputSampleL;
+ fpNShapeLB = (fpNShapeLB*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLB;
+ fpTemp = inputSampleR;
+ fpNShapeRB = (fpNShapeRB*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRB;
+ }
+ fpFlip = !fpFlip;
+ //end noise shaping on 32 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+}
+
+void Desk4::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames)
+{
+ double* in1 = inputs[0];
+ double* in2 = inputs[1];
+ double* out1 = outputs[0];
+ double* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+ double fpTemp; //this is different from singlereplacing
+ long double fpOld = 0.618033988749894848204586; //golden ratio!
+ long double fpNew = 1.0 - fpOld;
+
+ double gain = (pow(A,2)*10)+0.0001;
+ double gaintrim = (pow(A,2)*2)+1.0;
+ double slewgain = (pow(B,3)*40)+0.0001;
+ double prevslew = 0.105;
+ double intensity = (pow(C,6)*15)+0.0001;
+ double depthA = (pow(D,4)*940)+0.00001;
+ int offsetA = (int)(depthA * overallscale);
+ if (offsetA < 1) offsetA = 1;
+ if (offsetA > 4880) offsetA = 4880;
+ double balanceB = 0.0001;
+ slewgain *= overallscale;
+ prevslew *= overallscale;
+ balanceB /= overallscale;
+ double outputgain = E;
+ double wet = F;
+ double dry = 1.0 - wet;
+
+ double clampL;
+ double clampR;
+ double thicknessL;
+ double thicknessR;
+ double out;
+ double balanceA = 1.0 - balanceB;
+ double bridgerectifier;
+ double slewL;
+ double slewR;
+ double combSampleL;
+ double combSampleR;
+ double drySampleL;
+ double drySampleR;
+ long double inputSampleL;
+ long double inputSampleR;
+
+ while (--sampleFrames >= 0)
+ {
+ inputSampleL = *in1;
+ inputSampleR = *in2;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ static int noisesource = 0;
+ //this declares a variable before anything else is compiled. It won't keep assigning
+ //it to 0 for every sample, it's as if the declaration doesn't exist in this context,
+ //but it lets me add this denormalization fix in a single place rather than updating
+ //it in three different locations. The variable isn't thread-safe but this is only
+ //a random seed and we can share it with whatever.
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL = applyresidue;
+ }
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ static int noisesource = 0;
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR = applyresidue;
+ //this denormalization routine produces a white noise at -300 dB which the noise
+ //shaping will interact with to produce a bipolar output, but the noise is actually
+ //all positive. That should stop any variables from going denormal, and the routine
+ //only kicks in if digital black is input. As a final touch, if you save to 24-bit
+ //the silence will return to being digital black again.
+ }
+ drySampleL = inputSampleL;
+ drySampleR = inputSampleR;
+
+ if (gcount < 0 || gcount > 4900) {gcount = 4900;}
+
+ dL[gcount+4900] = dL[gcount] = fabs(inputSampleL)*intensity;
+ controlL += (dL[gcount] / offsetA);
+ controlL -= (dL[gcount+offsetA] / offsetA);
+ controlL -= 0.000001;
+ clampL = 1;
+ if (controlL < 0) {controlL = 0;}
+ if (controlL > 1) {clampL -= (controlL - 1); controlL = 1;}
+ if (clampL < 0.5) {clampL = 0.5;}
+
+ dR[gcount+4900] = dR[gcount] = fabs(inputSampleR)*intensity;
+ controlR += (dR[gcount] / offsetA);
+ controlR -= (dR[gcount+offsetA] / offsetA);
+ controlR -= 0.000001;
+ clampR = 1;
+ if (controlR < 0) {controlR = 0;}
+ if (controlR > 1) {clampR -= (controlR - 1); controlR = 1;}
+ if (clampR < 0.5) {clampR = 0.5;}
+
+
+ gcount--;
+ //control = 0 to 1
+ thicknessL = ((1.0 - controlL) * 2.0) - 1.0;
+ thicknessR = ((1.0 - controlR) * 2.0) - 1.0;
+
+ out = fabs(thicknessL);
+ bridgerectifier = fabs(inputSampleL);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ if (thicknessL > 0) bridgerectifier = sin(bridgerectifier);
+ else bridgerectifier = 1-cos(bridgerectifier);
+ //produce either boosted or starved version
+ if (inputSampleL > 0) inputSampleL = (inputSampleL*(1-out))+(bridgerectifier*out);
+ else inputSampleL = (inputSampleL*(1-out))-(bridgerectifier*out);
+ //blend according to density control
+
+ out = fabs(thicknessR);
+ bridgerectifier = fabs(inputSampleR);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ if (thicknessR > 0) bridgerectifier = sin(bridgerectifier);
+ else bridgerectifier = 1-cos(bridgerectifier);
+ //produce either boosted or starved version
+ if (inputSampleR > 0) inputSampleR = (inputSampleR*(1-out))+(bridgerectifier*out);
+ else inputSampleR = (inputSampleR*(1-out))-(bridgerectifier*out);
+ //blend according to density control
+
+ inputSampleL *= clampL;
+ inputSampleR *= clampR;
+
+ slewL = inputSampleL - lastSampleL;
+ lastSampleL = inputSampleL;
+ //Set up direct reference for slew
+
+ slewR = inputSampleR - lastSampleR;
+ lastSampleR = inputSampleR;
+ //Set up direct reference for slew
+
+ bridgerectifier = fabs(slewL*slewgain);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.0;
+ else bridgerectifier = sin(bridgerectifier);
+ if (slewL > 0) slewL = bridgerectifier/slewgain;
+ else slewL = -(bridgerectifier/slewgain);
+
+ bridgerectifier = fabs(slewR*slewgain);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.0;
+ else bridgerectifier = sin(bridgerectifier);
+ if (slewR > 0) slewR = bridgerectifier/slewgain;
+ else slewR = -(bridgerectifier/slewgain);
+
+ inputSampleL = (lastOutSampleL*balanceA) + (lastSampleL*balanceB) + slewL;
+ //go from last slewed, but include some raw values
+ lastOutSampleL = inputSampleL;
+ //Set up slewed reference
+
+ inputSampleR = (lastOutSampleR*balanceA) + (lastSampleR*balanceB) + slewR;
+ //go from last slewed, but include some raw values
+ lastOutSampleR = inputSampleR;
+ //Set up slewed reference
+
+ combSampleL = fabs(drySampleL*lastSampleL);
+ if (combSampleL > 1.0) combSampleL = 1.0;
+ //bailout for very high input gains
+
+ combSampleR = fabs(drySampleR*lastSampleR);
+ if (combSampleR > 1.0) combSampleR = 1.0;
+ //bailout for very high input gains
+
+ inputSampleL -= (lastSlewL * combSampleL * prevslew);
+ lastSlewL = slewL;
+ //slew interaction with previous slew
+
+ inputSampleR -= (lastSlewR * combSampleR * prevslew);
+ lastSlewR = slewR;
+ //slew interaction with previous slew
+
+ inputSampleL *= gain;
+ bridgerectifier = fabs(inputSampleL);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.0;
+ else bridgerectifier = sin(bridgerectifier);
+ if (inputSampleL > 0) inputSampleL = bridgerectifier;
+ else inputSampleL = -bridgerectifier;
+ //drive section
+ inputSampleL /= gain;
+ inputSampleL *= gaintrim;
+ //end of Desk section
+
+ inputSampleR *= gain;
+ bridgerectifier = fabs(inputSampleR);
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.0;
+ else bridgerectifier = sin(bridgerectifier);
+ if (inputSampleR > 0) inputSampleR = bridgerectifier;
+ else inputSampleR = -bridgerectifier;
+ //drive section
+ inputSampleR /= gain;
+ inputSampleR *= gaintrim;
+ //end of Desk section
+
+ if (outputgain != 1.0) {
+ inputSampleL *= outputgain;
+ inputSampleR *= outputgain;
+ }
+
+ if (wet !=1.0) {
+ inputSampleL = (inputSampleL * wet) + (drySampleL * dry);
+ inputSampleR = (inputSampleR * wet) + (drySampleR * dry);
+ }
+
+
+ //noise shaping to 64-bit floating point
+ if (fpFlip) {
+ fpTemp = inputSampleL;
+ fpNShapeLA = (fpNShapeLA*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLA;
+ fpTemp = inputSampleR;
+ fpNShapeRA = (fpNShapeRA*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRA;
+ }
+ else {
+ fpTemp = inputSampleL;
+ fpNShapeLB = (fpNShapeLB*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLB;
+ fpTemp = inputSampleR;
+ fpNShapeRB = (fpNShapeRB*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRB;
+ }
+ fpFlip = !fpFlip;
+ //end noise shaping on 64 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+} \ No newline at end of file