aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/WinVST/ADClip7/ADClip7Proc.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/WinVST/ADClip7/ADClip7Proc.cpp')
-rwxr-xr-xplugins/WinVST/ADClip7/ADClip7Proc.cpp953
1 files changed, 953 insertions, 0 deletions
diff --git a/plugins/WinVST/ADClip7/ADClip7Proc.cpp b/plugins/WinVST/ADClip7/ADClip7Proc.cpp
new file mode 100755
index 0000000..2705d61
--- /dev/null
+++ b/plugins/WinVST/ADClip7/ADClip7Proc.cpp
@@ -0,0 +1,953 @@
+/* ========================================
+ * ADClip7 - ADClip7.h
+ * Copyright (c) 2016 airwindows, All rights reserved
+ * ======================================== */
+
+#ifndef __ADClip7_H
+#include "ADClip7.h"
+#endif
+
+void ADClip7::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames)
+{
+ float* in1 = inputs[0];
+ float* in2 = inputs[1];
+ float* out1 = outputs[0];
+ float* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+ float fpTemp;
+ long double fpOld = 0.618033988749894848204586; //golden ratio!
+ long double fpNew = 1.0 - fpOld;
+
+ double inputGain = pow(10.0,(A*18.0)/20.0);
+ double softness = B * fpNew;
+ double hardness = 1.0 - softness;
+ double highslift = 0.307 * C;
+ double adjust = pow(highslift,3) * 0.416;
+ double subslift = 0.796 * C;
+ double calibsubs = subslift/53;
+ double invcalibsubs = 1.0 - calibsubs;
+ double subs = 0.81 + (calibsubs*2);
+ long double bridgerectifier;
+ int mode = (int) floor(D*2.999)+1;
+ double overshootL;
+ double overshootR;
+ double offsetH1 = 1.84;
+ offsetH1 *= overallscale;
+ double offsetH2 = offsetH1 * 1.9;
+ double offsetH3 = offsetH1 * 2.7;
+ double offsetL1 = 612;
+ offsetL1 *= overallscale;
+ double offsetL2 = offsetL1 * 2.0;
+ int refH1 = (int)floor(offsetH1);
+ int refH2 = (int)floor(offsetH2);
+ int refH3 = (int)floor(offsetH3);
+ int refL1 = (int)floor(offsetL1);
+ int refL2 = (int)floor(offsetL2);
+ int temp;
+ double fractionH1 = offsetH1 - floor(offsetH1);
+ double fractionH2 = offsetH2 - floor(offsetH2);
+ double fractionH3 = offsetH3 - floor(offsetH3);
+ double minusH1 = 1.0 - fractionH1;
+ double minusH2 = 1.0 - fractionH2;
+ double minusH3 = 1.0 - fractionH3;
+ double highsL = 0.0;
+ double highsR = 0.0;
+ int count = 0;
+
+ long double inputSampleL;
+ long double inputSampleR;
+
+ while (--sampleFrames >= 0)
+ {
+ inputSampleL = *in1;
+ inputSampleR = *in2;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ static int noisesource = 0;
+ //this declares a variable before anything else is compiled. It won't keep assigning
+ //it to 0 for every sample, it's as if the declaration doesn't exist in this context,
+ //but it lets me add this denormalization fix in a single place rather than updating
+ //it in three different locations. The variable isn't thread-safe but this is only
+ //a random seed and we can share it with whatever.
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL = applyresidue;
+ }
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ static int noisesource = 0;
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR = applyresidue;
+ //this denormalization routine produces a white noise at -300 dB which the noise
+ //shaping will interact with to produce a bipolar output, but the noise is actually
+ //all positive. That should stop any variables from going denormal, and the routine
+ //only kicks in if digital black is input. As a final touch, if you save to 24-bit
+ //the silence will return to being digital black again.
+ }
+
+
+
+ if (inputGain != 1.0) {
+ inputSampleL *= inputGain;
+ inputSampleR *= inputGain;
+ }
+
+ overshootL = fabs(inputSampleL) - refclipL;
+ overshootR = fabs(inputSampleR) - refclipR;
+ if (overshootL < 0.0) overshootL = 0.0;
+ if (overshootR < 0.0) overshootR = 0.0;
+
+ if (gcount < 0 || gcount > 11020) {gcount = 11020;}
+ count = gcount;
+ bL[count+11020] = bL[count] = overshootL;
+ bR[count+11020] = bR[count] = overshootR;
+ gcount--;
+
+ if (highslift > 0.0)
+ {
+ //we have a big pile of b[] which is overshoots
+ temp = count+refH3;
+ highsL = -(bL[temp] * minusH3); //less as value moves away from .0
+ highsL -= bL[temp+1]; //we can assume always using this in one way or another?
+ highsL -= (bL[temp+2] * fractionH3); //greater as value moves away from .0
+ highsL += (((bL[temp]-bL[temp+1])-(bL[temp+1]-bL[temp+2]))/50); //interpolation hacks 'r us
+ highsL *= adjust; //add in the kernel elements backwards saves multiplies
+ //stage 3 is a negative add
+ highsR = -(bR[temp] * minusH3); //less as value moves away from .0
+ highsR -= bR[temp+1]; //we can assume always using this in one way or another?
+ highsR -= (bR[temp+2] * fractionH3); //greater as value moves away from .0
+ highsR += (((bR[temp]-bR[temp+1])-(bR[temp+1]-bR[temp+2]))/50); //interpolation hacks 'r us
+ highsR *= adjust; //add in the kernel elements backwards saves multiplies
+ //stage 3 is a negative add
+ temp = count+refH2;
+ highsL += (bL[temp] * minusH2); //less as value moves away from .0
+ highsL += bL[temp+1]; //we can assume always using this in one way or another?
+ highsL += (bL[temp+2] * fractionH2); //greater as value moves away from .0
+ highsL -= (((bL[temp]-bL[temp+1])-(bL[temp+1]-bL[temp+2]))/50); //interpolation hacks 'r us
+ highsL *= adjust; //add in the kernel elements backwards saves multiplies
+ //stage 2 is a positive feedback of the overshoot
+ highsR += (bR[temp] * minusH2); //less as value moves away from .0
+ highsR += bR[temp+1]; //we can assume always using this in one way or another?
+ highsR += (bR[temp+2] * fractionH2); //greater as value moves away from .0
+ highsR -= (((bR[temp]-bR[temp+1])-(bR[temp+1]-bR[temp+2]))/50); //interpolation hacks 'r us
+ highsR *= adjust; //add in the kernel elements backwards saves multiplies
+ //stage 2 is a positive feedback of the overshoot
+ temp = count+refH1;
+ highsL -= (bL[temp] * minusH1); //less as value moves away from .0
+ highsL -= bL[temp+1]; //we can assume always using this in one way or another?
+ highsL -= (bL[temp+2] * fractionH1); //greater as value moves away from .0
+ highsL += (((bL[temp]-bL[temp+1])-(bL[temp+1]-bL[temp+2]))/50); //interpolation hacks 'r us
+ highsL *= adjust; //add in the kernel elements backwards saves multiplies
+ //stage 1 is a negative feedback of the overshoot
+ highsR -= (bR[temp] * minusH1); //less as value moves away from .0
+ highsR -= bR[temp+1]; //we can assume always using this in one way or another?
+ highsR -= (bR[temp+2] * fractionH1); //greater as value moves away from .0
+ highsR += (((bR[temp]-bR[temp+1])-(bR[temp+1]-bR[temp+2]))/50); //interpolation hacks 'r us
+ highsR *= adjust; //add in the kernel elements backwards saves multiplies
+ //stage 1 is a negative feedback of the overshoot
+ //done with interpolated mostly negative feedback of the overshoot
+ }
+
+ bridgerectifier = sin(fabs(highsL) * hardness);
+ //this will wrap around and is scaled back by softness
+ //wrap around is the same principle as Fracture: no top limit to sin()
+ if (highsL > 0) highsL = bridgerectifier;
+ else highsL = -bridgerectifier;
+
+ bridgerectifier = sin(fabs(highsR) * hardness);
+ //this will wrap around and is scaled back by softness
+ //wrap around is the same principle as Fracture: no top limit to sin()
+ if (highsR > 0) highsR = bridgerectifier;
+ else highsR = -bridgerectifier;
+
+ if (subslift > 0.0)
+ {
+ lowsL *= subs;
+ lowsR *= subs;
+ //going in we'll reel back some of the swing
+ temp = count+refL1;
+
+ lowsL -= bL[temp+127];
+ lowsL -= bL[temp+113];
+ lowsL -= bL[temp+109];
+ lowsL -= bL[temp+107];
+ lowsL -= bL[temp+103];
+ lowsL -= bL[temp+101];
+ lowsL -= bL[temp+97];
+ lowsL -= bL[temp+89];
+ lowsL -= bL[temp+83];
+ lowsL -= bL[temp+79];
+ lowsL -= bL[temp+73];
+ lowsL -= bL[temp+71];
+ lowsL -= bL[temp+67];
+ lowsL -= bL[temp+61];
+ lowsL -= bL[temp+59];
+ lowsL -= bL[temp+53];
+ lowsL -= bL[temp+47];
+ lowsL -= bL[temp+43];
+ lowsL -= bL[temp+41];
+ lowsL -= bL[temp+37];
+ lowsL -= bL[temp+31];
+ lowsL -= bL[temp+29];
+ lowsL -= bL[temp+23];
+ lowsL -= bL[temp+19];
+ lowsL -= bL[temp+17];
+ lowsL -= bL[temp+13];
+ lowsL -= bL[temp+11];
+ lowsL -= bL[temp+7];
+ lowsL -= bL[temp+5];
+ lowsL -= bL[temp+3];
+ lowsL -= bL[temp+2];
+ lowsL -= bL[temp+1];
+ //initial negative lobe
+
+ lowsR -= bR[temp+127];
+ lowsR -= bR[temp+113];
+ lowsR -= bR[temp+109];
+ lowsR -= bR[temp+107];
+ lowsR -= bR[temp+103];
+ lowsR -= bR[temp+101];
+ lowsR -= bR[temp+97];
+ lowsR -= bR[temp+89];
+ lowsR -= bR[temp+83];
+ lowsR -= bR[temp+79];
+ lowsR -= bR[temp+73];
+ lowsR -= bR[temp+71];
+ lowsR -= bR[temp+67];
+ lowsR -= bR[temp+61];
+ lowsR -= bR[temp+59];
+ lowsR -= bR[temp+53];
+ lowsR -= bR[temp+47];
+ lowsR -= bR[temp+43];
+ lowsR -= bR[temp+41];
+ lowsR -= bR[temp+37];
+ lowsR -= bR[temp+31];
+ lowsR -= bR[temp+29];
+ lowsR -= bR[temp+23];
+ lowsR -= bR[temp+19];
+ lowsR -= bR[temp+17];
+ lowsR -= bR[temp+13];
+ lowsR -= bR[temp+11];
+ lowsR -= bR[temp+7];
+ lowsR -= bR[temp+5];
+ lowsR -= bR[temp+3];
+ lowsR -= bR[temp+2];
+ lowsR -= bR[temp+1];
+ //initial negative lobe
+
+ lowsL *= subs;
+ lowsL *= subs;
+ lowsR *= subs;
+ lowsR *= subs;
+ //twice, to minimize the suckout in low boost situations
+ temp = count+refL2;
+
+ lowsL += bL[temp+127];
+ lowsL += bL[temp+113];
+ lowsL += bL[temp+109];
+ lowsL += bL[temp+107];
+ lowsL += bL[temp+103];
+ lowsL += bL[temp+101];
+ lowsL += bL[temp+97];
+ lowsL += bL[temp+89];
+ lowsL += bL[temp+83];
+ lowsL += bL[temp+79];
+ lowsL += bL[temp+73];
+ lowsL += bL[temp+71];
+ lowsL += bL[temp+67];
+ lowsL += bL[temp+61];
+ lowsL += bL[temp+59];
+ lowsL += bL[temp+53];
+ lowsL += bL[temp+47];
+ lowsL += bL[temp+43];
+ lowsL += bL[temp+41];
+ lowsL += bL[temp+37];
+ lowsL += bL[temp+31];
+ lowsL += bL[temp+29];
+ lowsL += bL[temp+23];
+ lowsL += bL[temp+19];
+ lowsL += bL[temp+17];
+ lowsL += bL[temp+13];
+ lowsL += bL[temp+11];
+ lowsL += bL[temp+7];
+ lowsL += bL[temp+5];
+ lowsL += bL[temp+3];
+ lowsL += bL[temp+2];
+ lowsL += bL[temp+1];
+ //followup positive lobe
+
+ lowsR += bR[temp+127];
+ lowsR += bR[temp+113];
+ lowsR += bR[temp+109];
+ lowsR += bR[temp+107];
+ lowsR += bR[temp+103];
+ lowsR += bR[temp+101];
+ lowsR += bR[temp+97];
+ lowsR += bR[temp+89];
+ lowsR += bR[temp+83];
+ lowsR += bR[temp+79];
+ lowsR += bR[temp+73];
+ lowsR += bR[temp+71];
+ lowsR += bR[temp+67];
+ lowsR += bR[temp+61];
+ lowsR += bR[temp+59];
+ lowsR += bR[temp+53];
+ lowsR += bR[temp+47];
+ lowsR += bR[temp+43];
+ lowsR += bR[temp+41];
+ lowsR += bR[temp+37];
+ lowsR += bR[temp+31];
+ lowsR += bR[temp+29];
+ lowsR += bR[temp+23];
+ lowsR += bR[temp+19];
+ lowsR += bR[temp+17];
+ lowsR += bR[temp+13];
+ lowsR += bR[temp+11];
+ lowsR += bR[temp+7];
+ lowsR += bR[temp+5];
+ lowsR += bR[temp+3];
+ lowsR += bR[temp+2];
+ lowsR += bR[temp+1];
+ //followup positive lobe
+
+ lowsL *= subs;
+ lowsR *= subs;
+ //now we have the lows content to use
+ }
+
+ bridgerectifier = sin(fabs(lowsL) * softness);
+ //this will wrap around and is scaled back by hardness: hard = less bass push, more treble
+ //wrap around is the same principle as Fracture: no top limit to sin()
+ if (lowsL > 0) lowsL = bridgerectifier;
+ else lowsL = -bridgerectifier;
+
+ bridgerectifier = sin(fabs(lowsR) * softness);
+ //this will wrap around and is scaled back by hardness: hard = less bass push, more treble
+ //wrap around is the same principle as Fracture: no top limit to sin()
+ if (lowsR > 0) lowsR = bridgerectifier;
+ else lowsR = -bridgerectifier;
+
+ iirLowsAL = (iirLowsAL * invcalibsubs) + (lowsL * calibsubs);
+ lowsL = iirLowsAL;
+ bridgerectifier = sin(fabs(lowsL));
+ if (lowsL > 0) lowsL = bridgerectifier;
+ else lowsL = -bridgerectifier;
+
+ iirLowsAR = (iirLowsAR * invcalibsubs) + (lowsR * calibsubs);
+ lowsR = iirLowsAR;
+ bridgerectifier = sin(fabs(lowsR));
+ if (lowsR > 0) lowsR = bridgerectifier;
+ else lowsR = -bridgerectifier;
+
+ iirLowsBL = (iirLowsBL * invcalibsubs) + (lowsL * calibsubs);
+ lowsL = iirLowsBL;
+ bridgerectifier = sin(fabs(lowsL)) * 2.0;
+ if (lowsL > 0) lowsL = bridgerectifier;
+ else lowsL = -bridgerectifier;
+
+ iirLowsBR = (iirLowsBR * invcalibsubs) + (lowsR * calibsubs);
+ lowsR = iirLowsBR;
+ bridgerectifier = sin(fabs(lowsR)) * 2.0;
+ if (lowsR > 0) lowsR = bridgerectifier;
+ else lowsR = -bridgerectifier;
+
+ if (highslift > 0.0) inputSampleL += (highsL * (1.0-fabs(inputSampleL*hardness)));
+ if (subslift > 0.0) inputSampleL += (lowsL * (1.0-fabs(inputSampleL*softness)));
+
+ if (highslift > 0.0) inputSampleR += (highsR * (1.0-fabs(inputSampleR*hardness)));
+ if (subslift > 0.0) inputSampleR += (lowsR * (1.0-fabs(inputSampleR*softness)));
+
+ if (inputSampleL > refclipL && refclipL > 0.9) refclipL -= 0.01;
+ if (inputSampleL < -refclipL && refclipL > 0.9) refclipL -= 0.01;
+ if (refclipL < 0.99) refclipL += 0.00001;
+ //adjust clip level on the fly
+
+ if (inputSampleR > refclipR && refclipR > 0.9) refclipR -= 0.01;
+ if (inputSampleR < -refclipR && refclipR > 0.9) refclipR -= 0.01;
+ if (refclipR < 0.99) refclipR += 0.00001;
+ //adjust clip level on the fly
+
+ if (lastSampleL >= refclipL)
+ {
+ if (inputSampleL < refclipL) lastSampleL = ((refclipL*hardness) + (inputSampleL * softness));
+ else lastSampleL = refclipL;
+ }
+
+ if (lastSampleR >= refclipR)
+ {
+ if (inputSampleR < refclipR) lastSampleR = ((refclipR*hardness) + (inputSampleR * softness));
+ else lastSampleR = refclipR;
+ }
+
+ if (lastSampleL <= -refclipL)
+ {
+ if (inputSampleL > -refclipL) lastSampleL = ((-refclipL*hardness) + (inputSampleL * softness));
+ else lastSampleL = -refclipL;
+ }
+
+ if (lastSampleR <= -refclipR)
+ {
+ if (inputSampleR > -refclipR) lastSampleR = ((-refclipR*hardness) + (inputSampleR * softness));
+ else lastSampleR = -refclipR;
+ }
+
+ if (inputSampleL > refclipL)
+ {
+ if (lastSampleL < refclipL) inputSampleL = ((refclipL*hardness) + (lastSampleL * softness));
+ else inputSampleL = refclipL;
+ }
+
+ if (inputSampleR > refclipR)
+ {
+ if (lastSampleR < refclipR) inputSampleR = ((refclipR*hardness) + (lastSampleR * softness));
+ else inputSampleR = refclipR;
+ }
+
+ if (inputSampleL < -refclipL)
+ {
+ if (lastSampleL > -refclipL) inputSampleL = ((-refclipL*hardness) + (lastSampleL * softness));
+ else inputSampleL = -refclipL;
+ }
+
+ if (inputSampleR < -refclipR)
+ {
+ if (lastSampleR > -refclipR) inputSampleR = ((-refclipR*hardness) + (lastSampleR * softness));
+ else inputSampleR = -refclipR;
+ }
+ lastSampleL = inputSampleL;
+ lastSampleR = inputSampleR;
+
+ switch (mode)
+ {
+ case 1: break; //Normal
+ case 2: inputSampleL /= inputGain; inputSampleR /= inputGain; break; //Gain Match
+ case 3: inputSampleL = overshootL + highsL + lowsL; inputSampleR = overshootR + highsR + lowsR; break; //Clip Only
+ }
+ //this is our output mode switch, showing the effects
+
+ if (inputSampleL > refclipL) inputSampleL = refclipL;
+ if (inputSampleL < -refclipL) inputSampleL = -refclipL;
+ if (inputSampleR > refclipR) inputSampleR = refclipR;
+ if (inputSampleR < -refclipR) inputSampleR = -refclipR;
+ //final iron bar
+
+ //noise shaping to 32-bit floating point
+ if (fpFlip) {
+ fpTemp = inputSampleL;
+ fpNShapeLA = (fpNShapeLA*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLA;
+ fpTemp = inputSampleR;
+ fpNShapeRA = (fpNShapeRA*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRA;
+ }
+ else {
+ fpTemp = inputSampleL;
+ fpNShapeLB = (fpNShapeLB*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLB;
+ fpTemp = inputSampleR;
+ fpNShapeRB = (fpNShapeRB*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRB;
+ }
+ fpFlip = !fpFlip;
+ //end noise shaping on 32 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+}
+
+void ADClip7::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames)
+{
+ double* in1 = inputs[0];
+ double* in2 = inputs[1];
+ double* out1 = outputs[0];
+ double* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+ double fpTemp;
+ long double fpOld = 0.618033988749894848204586; //golden ratio!
+ long double fpNew = 1.0 - fpOld;
+
+ double inputGain = pow(10.0,(A*18.0)/20.0);
+ double softness = B * fpNew;
+ double hardness = 1.0 - softness;
+ double highslift = 0.307 * C;
+ double adjust = pow(highslift,3) * 0.416;
+ double subslift = 0.796 * C;
+ double calibsubs = subslift/53;
+ double invcalibsubs = 1.0 - calibsubs;
+ double subs = 0.81 + (calibsubs*2);
+ long double bridgerectifier;
+ int mode = (int) floor(D*2.999)+1;
+ double overshootL;
+ double overshootR;
+ double offsetH1 = 1.84;
+ offsetH1 *= overallscale;
+ double offsetH2 = offsetH1 * 1.9;
+ double offsetH3 = offsetH1 * 2.7;
+ double offsetL1 = 612;
+ offsetL1 *= overallscale;
+ double offsetL2 = offsetL1 * 2.0;
+ int refH1 = (int)floor(offsetH1);
+ int refH2 = (int)floor(offsetH2);
+ int refH3 = (int)floor(offsetH3);
+ int refL1 = (int)floor(offsetL1);
+ int refL2 = (int)floor(offsetL2);
+ int temp;
+ double fractionH1 = offsetH1 - floor(offsetH1);
+ double fractionH2 = offsetH2 - floor(offsetH2);
+ double fractionH3 = offsetH3 - floor(offsetH3);
+ double minusH1 = 1.0 - fractionH1;
+ double minusH2 = 1.0 - fractionH2;
+ double minusH3 = 1.0 - fractionH3;
+ double highsL = 0.0;
+ double highsR = 0.0;
+ int count = 0;
+
+ long double inputSampleL;
+ long double inputSampleR;
+
+
+ while (--sampleFrames >= 0)
+ {
+ inputSampleL = *in1;
+ inputSampleR = *in2;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ static int noisesource = 0;
+ //this declares a variable before anything else is compiled. It won't keep assigning
+ //it to 0 for every sample, it's as if the declaration doesn't exist in this context,
+ //but it lets me add this denormalization fix in a single place rather than updating
+ //it in three different locations. The variable isn't thread-safe but this is only
+ //a random seed and we can share it with whatever.
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL = applyresidue;
+ }
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ static int noisesource = 0;
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR = applyresidue;
+ //this denormalization routine produces a white noise at -300 dB which the noise
+ //shaping will interact with to produce a bipolar output, but the noise is actually
+ //all positive. That should stop any variables from going denormal, and the routine
+ //only kicks in if digital black is input. As a final touch, if you save to 24-bit
+ //the silence will return to being digital black again.
+ }
+
+
+
+ if (inputGain != 1.0) {
+ inputSampleL *= inputGain;
+ inputSampleR *= inputGain;
+ }
+
+ overshootL = fabs(inputSampleL) - refclipL;
+ overshootR = fabs(inputSampleR) - refclipR;
+ if (overshootL < 0.0) overshootL = 0.0;
+ if (overshootR < 0.0) overshootR = 0.0;
+
+ if (gcount < 0 || gcount > 11020) {gcount = 11020;}
+ count = gcount;
+ bL[count+11020] = bL[count] = overshootL;
+ bR[count+11020] = bR[count] = overshootR;
+ gcount--;
+
+ if (highslift > 0.0)
+ {
+ //we have a big pile of b[] which is overshoots
+ temp = count+refH3;
+ highsL = -(bL[temp] * minusH3); //less as value moves away from .0
+ highsL -= bL[temp+1]; //we can assume always using this in one way or another?
+ highsL -= (bL[temp+2] * fractionH3); //greater as value moves away from .0
+ highsL += (((bL[temp]-bL[temp+1])-(bL[temp+1]-bL[temp+2]))/50); //interpolation hacks 'r us
+ highsL *= adjust; //add in the kernel elements backwards saves multiplies
+ //stage 3 is a negative add
+ highsR = -(bR[temp] * minusH3); //less as value moves away from .0
+ highsR -= bR[temp+1]; //we can assume always using this in one way or another?
+ highsR -= (bR[temp+2] * fractionH3); //greater as value moves away from .0
+ highsR += (((bR[temp]-bR[temp+1])-(bR[temp+1]-bR[temp+2]))/50); //interpolation hacks 'r us
+ highsR *= adjust; //add in the kernel elements backwards saves multiplies
+ //stage 3 is a negative add
+ temp = count+refH2;
+ highsL += (bL[temp] * minusH2); //less as value moves away from .0
+ highsL += bL[temp+1]; //we can assume always using this in one way or another?
+ highsL += (bL[temp+2] * fractionH2); //greater as value moves away from .0
+ highsL -= (((bL[temp]-bL[temp+1])-(bL[temp+1]-bL[temp+2]))/50); //interpolation hacks 'r us
+ highsL *= adjust; //add in the kernel elements backwards saves multiplies
+ //stage 2 is a positive feedback of the overshoot
+ highsR += (bR[temp] * minusH2); //less as value moves away from .0
+ highsR += bR[temp+1]; //we can assume always using this in one way or another?
+ highsR += (bR[temp+2] * fractionH2); //greater as value moves away from .0
+ highsR -= (((bR[temp]-bR[temp+1])-(bR[temp+1]-bR[temp+2]))/50); //interpolation hacks 'r us
+ highsR *= adjust; //add in the kernel elements backwards saves multiplies
+ //stage 2 is a positive feedback of the overshoot
+ temp = count+refH1;
+ highsL -= (bL[temp] * minusH1); //less as value moves away from .0
+ highsL -= bL[temp+1]; //we can assume always using this in one way or another?
+ highsL -= (bL[temp+2] * fractionH1); //greater as value moves away from .0
+ highsL += (((bL[temp]-bL[temp+1])-(bL[temp+1]-bL[temp+2]))/50); //interpolation hacks 'r us
+ highsL *= adjust; //add in the kernel elements backwards saves multiplies
+ //stage 1 is a negative feedback of the overshoot
+ highsR -= (bR[temp] * minusH1); //less as value moves away from .0
+ highsR -= bR[temp+1]; //we can assume always using this in one way or another?
+ highsR -= (bR[temp+2] * fractionH1); //greater as value moves away from .0
+ highsR += (((bR[temp]-bR[temp+1])-(bR[temp+1]-bR[temp+2]))/50); //interpolation hacks 'r us
+ highsR *= adjust; //add in the kernel elements backwards saves multiplies
+ //stage 1 is a negative feedback of the overshoot
+ //done with interpolated mostly negative feedback of the overshoot
+ }
+
+ bridgerectifier = sin(fabs(highsL) * hardness);
+ //this will wrap around and is scaled back by softness
+ //wrap around is the same principle as Fracture: no top limit to sin()
+ if (highsL > 0) highsL = bridgerectifier;
+ else highsL = -bridgerectifier;
+
+ bridgerectifier = sin(fabs(highsR) * hardness);
+ //this will wrap around and is scaled back by softness
+ //wrap around is the same principle as Fracture: no top limit to sin()
+ if (highsR > 0) highsR = bridgerectifier;
+ else highsR = -bridgerectifier;
+
+ if (subslift > 0.0)
+ {
+ lowsL *= subs;
+ lowsR *= subs;
+ //going in we'll reel back some of the swing
+ temp = count+refL1;
+
+ lowsL -= bL[temp+127];
+ lowsL -= bL[temp+113];
+ lowsL -= bL[temp+109];
+ lowsL -= bL[temp+107];
+ lowsL -= bL[temp+103];
+ lowsL -= bL[temp+101];
+ lowsL -= bL[temp+97];
+ lowsL -= bL[temp+89];
+ lowsL -= bL[temp+83];
+ lowsL -= bL[temp+79];
+ lowsL -= bL[temp+73];
+ lowsL -= bL[temp+71];
+ lowsL -= bL[temp+67];
+ lowsL -= bL[temp+61];
+ lowsL -= bL[temp+59];
+ lowsL -= bL[temp+53];
+ lowsL -= bL[temp+47];
+ lowsL -= bL[temp+43];
+ lowsL -= bL[temp+41];
+ lowsL -= bL[temp+37];
+ lowsL -= bL[temp+31];
+ lowsL -= bL[temp+29];
+ lowsL -= bL[temp+23];
+ lowsL -= bL[temp+19];
+ lowsL -= bL[temp+17];
+ lowsL -= bL[temp+13];
+ lowsL -= bL[temp+11];
+ lowsL -= bL[temp+7];
+ lowsL -= bL[temp+5];
+ lowsL -= bL[temp+3];
+ lowsL -= bL[temp+2];
+ lowsL -= bL[temp+1];
+ //initial negative lobe
+
+ lowsR -= bR[temp+127];
+ lowsR -= bR[temp+113];
+ lowsR -= bR[temp+109];
+ lowsR -= bR[temp+107];
+ lowsR -= bR[temp+103];
+ lowsR -= bR[temp+101];
+ lowsR -= bR[temp+97];
+ lowsR -= bR[temp+89];
+ lowsR -= bR[temp+83];
+ lowsR -= bR[temp+79];
+ lowsR -= bR[temp+73];
+ lowsR -= bR[temp+71];
+ lowsR -= bR[temp+67];
+ lowsR -= bR[temp+61];
+ lowsR -= bR[temp+59];
+ lowsR -= bR[temp+53];
+ lowsR -= bR[temp+47];
+ lowsR -= bR[temp+43];
+ lowsR -= bR[temp+41];
+ lowsR -= bR[temp+37];
+ lowsR -= bR[temp+31];
+ lowsR -= bR[temp+29];
+ lowsR -= bR[temp+23];
+ lowsR -= bR[temp+19];
+ lowsR -= bR[temp+17];
+ lowsR -= bR[temp+13];
+ lowsR -= bR[temp+11];
+ lowsR -= bR[temp+7];
+ lowsR -= bR[temp+5];
+ lowsR -= bR[temp+3];
+ lowsR -= bR[temp+2];
+ lowsR -= bR[temp+1];
+ //initial negative lobe
+
+ lowsL *= subs;
+ lowsL *= subs;
+ lowsR *= subs;
+ lowsR *= subs;
+ //twice, to minimize the suckout in low boost situations
+ temp = count+refL2;
+
+ lowsL += bL[temp+127];
+ lowsL += bL[temp+113];
+ lowsL += bL[temp+109];
+ lowsL += bL[temp+107];
+ lowsL += bL[temp+103];
+ lowsL += bL[temp+101];
+ lowsL += bL[temp+97];
+ lowsL += bL[temp+89];
+ lowsL += bL[temp+83];
+ lowsL += bL[temp+79];
+ lowsL += bL[temp+73];
+ lowsL += bL[temp+71];
+ lowsL += bL[temp+67];
+ lowsL += bL[temp+61];
+ lowsL += bL[temp+59];
+ lowsL += bL[temp+53];
+ lowsL += bL[temp+47];
+ lowsL += bL[temp+43];
+ lowsL += bL[temp+41];
+ lowsL += bL[temp+37];
+ lowsL += bL[temp+31];
+ lowsL += bL[temp+29];
+ lowsL += bL[temp+23];
+ lowsL += bL[temp+19];
+ lowsL += bL[temp+17];
+ lowsL += bL[temp+13];
+ lowsL += bL[temp+11];
+ lowsL += bL[temp+7];
+ lowsL += bL[temp+5];
+ lowsL += bL[temp+3];
+ lowsL += bL[temp+2];
+ lowsL += bL[temp+1];
+ //followup positive lobe
+
+ lowsR += bR[temp+127];
+ lowsR += bR[temp+113];
+ lowsR += bR[temp+109];
+ lowsR += bR[temp+107];
+ lowsR += bR[temp+103];
+ lowsR += bR[temp+101];
+ lowsR += bR[temp+97];
+ lowsR += bR[temp+89];
+ lowsR += bR[temp+83];
+ lowsR += bR[temp+79];
+ lowsR += bR[temp+73];
+ lowsR += bR[temp+71];
+ lowsR += bR[temp+67];
+ lowsR += bR[temp+61];
+ lowsR += bR[temp+59];
+ lowsR += bR[temp+53];
+ lowsR += bR[temp+47];
+ lowsR += bR[temp+43];
+ lowsR += bR[temp+41];
+ lowsR += bR[temp+37];
+ lowsR += bR[temp+31];
+ lowsR += bR[temp+29];
+ lowsR += bR[temp+23];
+ lowsR += bR[temp+19];
+ lowsR += bR[temp+17];
+ lowsR += bR[temp+13];
+ lowsR += bR[temp+11];
+ lowsR += bR[temp+7];
+ lowsR += bR[temp+5];
+ lowsR += bR[temp+3];
+ lowsR += bR[temp+2];
+ lowsR += bR[temp+1];
+ //followup positive lobe
+
+ lowsL *= subs;
+ lowsR *= subs;
+ //now we have the lows content to use
+ }
+
+ bridgerectifier = sin(fabs(lowsL) * softness);
+ //this will wrap around and is scaled back by hardness: hard = less bass push, more treble
+ //wrap around is the same principle as Fracture: no top limit to sin()
+ if (lowsL > 0) lowsL = bridgerectifier;
+ else lowsL = -bridgerectifier;
+
+ bridgerectifier = sin(fabs(lowsR) * softness);
+ //this will wrap around and is scaled back by hardness: hard = less bass push, more treble
+ //wrap around is the same principle as Fracture: no top limit to sin()
+ if (lowsR > 0) lowsR = bridgerectifier;
+ else lowsR = -bridgerectifier;
+
+ iirLowsAL = (iirLowsAL * invcalibsubs) + (lowsL * calibsubs);
+ lowsL = iirLowsAL;
+ bridgerectifier = sin(fabs(lowsL));
+ if (lowsL > 0) lowsL = bridgerectifier;
+ else lowsL = -bridgerectifier;
+
+ iirLowsAR = (iirLowsAR * invcalibsubs) + (lowsR * calibsubs);
+ lowsR = iirLowsAR;
+ bridgerectifier = sin(fabs(lowsR));
+ if (lowsR > 0) lowsR = bridgerectifier;
+ else lowsR = -bridgerectifier;
+
+ iirLowsBL = (iirLowsBL * invcalibsubs) + (lowsL * calibsubs);
+ lowsL = iirLowsBL;
+ bridgerectifier = sin(fabs(lowsL)) * 2.0;
+ if (lowsL > 0) lowsL = bridgerectifier;
+ else lowsL = -bridgerectifier;
+
+ iirLowsBR = (iirLowsBR * invcalibsubs) + (lowsR * calibsubs);
+ lowsR = iirLowsBR;
+ bridgerectifier = sin(fabs(lowsR)) * 2.0;
+ if (lowsR > 0) lowsR = bridgerectifier;
+ else lowsR = -bridgerectifier;
+
+ if (highslift > 0.0) inputSampleL += (highsL * (1.0-fabs(inputSampleL*hardness)));
+ if (subslift > 0.0) inputSampleL += (lowsL * (1.0-fabs(inputSampleL*softness)));
+
+ if (highslift > 0.0) inputSampleR += (highsR * (1.0-fabs(inputSampleR*hardness)));
+ if (subslift > 0.0) inputSampleR += (lowsR * (1.0-fabs(inputSampleR*softness)));
+
+ if (inputSampleL > refclipL && refclipL > 0.9) refclipL -= 0.01;
+ if (inputSampleL < -refclipL && refclipL > 0.9) refclipL -= 0.01;
+ if (refclipL < 0.99) refclipL += 0.00001;
+ //adjust clip level on the fly
+
+ if (inputSampleR > refclipR && refclipR > 0.9) refclipR -= 0.01;
+ if (inputSampleR < -refclipR && refclipR > 0.9) refclipR -= 0.01;
+ if (refclipR < 0.99) refclipR += 0.00001;
+ //adjust clip level on the fly
+
+ if (lastSampleL >= refclipL)
+ {
+ if (inputSampleL < refclipL) lastSampleL = ((refclipL*hardness) + (inputSampleL * softness));
+ else lastSampleL = refclipL;
+ }
+
+ if (lastSampleR >= refclipR)
+ {
+ if (inputSampleR < refclipR) lastSampleR = ((refclipR*hardness) + (inputSampleR * softness));
+ else lastSampleR = refclipR;
+ }
+
+ if (lastSampleL <= -refclipL)
+ {
+ if (inputSampleL > -refclipL) lastSampleL = ((-refclipL*hardness) + (inputSampleL * softness));
+ else lastSampleL = -refclipL;
+ }
+
+ if (lastSampleR <= -refclipR)
+ {
+ if (inputSampleR > -refclipR) lastSampleR = ((-refclipR*hardness) + (inputSampleR * softness));
+ else lastSampleR = -refclipR;
+ }
+
+ if (inputSampleL > refclipL)
+ {
+ if (lastSampleL < refclipL) inputSampleL = ((refclipL*hardness) + (lastSampleL * softness));
+ else inputSampleL = refclipL;
+ }
+
+ if (inputSampleR > refclipR)
+ {
+ if (lastSampleR < refclipR) inputSampleR = ((refclipR*hardness) + (lastSampleR * softness));
+ else inputSampleR = refclipR;
+ }
+
+ if (inputSampleL < -refclipL)
+ {
+ if (lastSampleL > -refclipL) inputSampleL = ((-refclipL*hardness) + (lastSampleL * softness));
+ else inputSampleL = -refclipL;
+ }
+
+ if (inputSampleR < -refclipR)
+ {
+ if (lastSampleR > -refclipR) inputSampleR = ((-refclipR*hardness) + (lastSampleR * softness));
+ else inputSampleR = -refclipR;
+ }
+ lastSampleL = inputSampleL;
+ lastSampleR = inputSampleR;
+
+ switch (mode)
+ {
+ case 1: break; //Normal
+ case 2: inputSampleL /= inputGain; inputSampleR /= inputGain; break; //Gain Match
+ case 3: inputSampleL = overshootL + highsL + lowsL; inputSampleR = overshootR + highsR + lowsR; break; //Clip Only
+ }
+ //this is our output mode switch, showing the effects
+
+ if (inputSampleL > refclipL) inputSampleL = refclipL;
+ if (inputSampleL < -refclipL) inputSampleL = -refclipL;
+ if (inputSampleR > refclipR) inputSampleR = refclipR;
+ if (inputSampleR < -refclipR) inputSampleR = -refclipR;
+ //final iron bar
+
+ //noise shaping to 64-bit floating point
+ if (fpFlip) {
+ fpTemp = inputSampleL;
+ fpNShapeLA = (fpNShapeLA*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLA;
+ fpTemp = inputSampleR;
+ fpNShapeRA = (fpNShapeRA*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRA;
+ }
+ else {
+ fpTemp = inputSampleL;
+ fpNShapeLB = (fpNShapeLB*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLB;
+ fpTemp = inputSampleR;
+ fpNShapeRB = (fpNShapeRB*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRB;
+ }
+ fpFlip = !fpFlip;
+ //end noise shaping on 64 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+} \ No newline at end of file