aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/MacVST/VariMu/source/VariMuProc.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/MacVST/VariMu/source/VariMuProc.cpp')
-rwxr-xr-xplugins/MacVST/VariMu/source/VariMuProc.cpp518
1 files changed, 518 insertions, 0 deletions
diff --git a/plugins/MacVST/VariMu/source/VariMuProc.cpp b/plugins/MacVST/VariMu/source/VariMuProc.cpp
new file mode 100755
index 0000000..b966cd8
--- /dev/null
+++ b/plugins/MacVST/VariMu/source/VariMuProc.cpp
@@ -0,0 +1,518 @@
+/* ========================================
+ * VariMu - VariMu.h
+ * Copyright (c) 2016 airwindows, All rights reserved
+ * ======================================== */
+
+#ifndef __VariMu_H
+#include "VariMu.h"
+#endif
+
+void VariMu::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames)
+{
+ float* in1 = inputs[0];
+ float* in2 = inputs[1];
+ float* out1 = outputs[0];
+ float* out2 = outputs[1];
+
+ double overallscale = 2.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+
+ double threshold = 1.001 - (1.0-pow(1.0-A,3));
+ double muMakeupGain = sqrt(1.0 / threshold);
+ muMakeupGain = (muMakeupGain + sqrt(muMakeupGain))/2.0;
+ muMakeupGain = sqrt(muMakeupGain);
+ double outGain = sqrt(muMakeupGain);
+ //gain settings around threshold
+ double release = pow((1.15-B),5)*32768.0;
+ release /= overallscale;
+ double fastest = sqrt(release);
+ //speed settings around release
+ double coefficient;
+ double output = outGain * C;
+ double wet = D;
+ long double squaredSampleL;
+ long double squaredSampleR;
+
+ // µ µ µ µ µ µ µ µ µ µ µ µ is the kitten song o/~
+
+ while (--sampleFrames >= 0)
+ {
+ long double inputSampleL = *in1;
+ long double inputSampleR = *in2;
+
+ static int noisesourceL = 0;
+ static int noisesourceR = 850010;
+ int residue;
+ double applyresidue;
+
+ noisesourceL = noisesourceL % 1700021; noisesourceL++;
+ residue = noisesourceL * noisesourceL;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL += applyresidue;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ inputSampleL -= applyresidue;
+ }
+
+ noisesourceR = noisesourceR % 1700021; noisesourceR++;
+ residue = noisesourceR * noisesourceR;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR += applyresidue;
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ inputSampleR -= applyresidue;
+ }
+ //for live air, we always apply the dither noise. Then, if our result is
+ //effectively digital black, we'll subtract it aVariMu. We want a 'air' hiss
+ long double drySampleL = inputSampleL;
+ long double drySampleR = inputSampleR;
+
+ if (fabs(inputSampleL) > fabs(previousL)) squaredSampleL = previousL * previousL;
+ else squaredSampleL = inputSampleL * inputSampleL;
+ previousL = inputSampleL;
+ inputSampleL *= muMakeupGain;
+
+ if (fabs(inputSampleR) > fabs(previousR)) squaredSampleR = previousR * previousR;
+ else squaredSampleR = inputSampleR * inputSampleR;
+ previousR = inputSampleR;
+ inputSampleR *= muMakeupGain;
+
+ //adjust coefficients for L
+ if (flip)
+ {
+ if (fabs(squaredSampleL) > threshold)
+ {
+ muVaryL = threshold / fabs(squaredSampleL);
+ muAttackL = sqrt(fabs(muSpeedAL));
+ muCoefficientAL = muCoefficientAL * (muAttackL-1.0);
+ if (muVaryL < threshold)
+ {
+ muCoefficientAL = muCoefficientAL + threshold;
+ }
+ else
+ {
+ muCoefficientAL = muCoefficientAL + muVaryL;
+ }
+ muCoefficientAL = muCoefficientAL / muAttackL;
+ }
+ else
+ {
+ muCoefficientAL = muCoefficientAL * ((muSpeedAL * muSpeedAL)-1.0);
+ muCoefficientAL = muCoefficientAL + 1.0;
+ muCoefficientAL = muCoefficientAL / (muSpeedAL * muSpeedAL);
+ }
+ muNewSpeedL = muSpeedAL * (muSpeedAL-1);
+ muNewSpeedL = muNewSpeedL + fabs(squaredSampleL*release)+fastest;
+ muSpeedAL = muNewSpeedL / muSpeedAL;
+ }
+ else
+ {
+ if (fabs(squaredSampleL) > threshold)
+ {
+ muVaryL = threshold / fabs(squaredSampleL);
+ muAttackL = sqrt(fabs(muSpeedBL));
+ muCoefficientBL = muCoefficientBL * (muAttackL-1);
+ if (muVaryL < threshold)
+ {
+ muCoefficientBL = muCoefficientBL + threshold;
+ }
+ else
+ {
+ muCoefficientBL = muCoefficientBL + muVaryL;
+ }
+ muCoefficientBL = muCoefficientBL / muAttackL;
+ }
+ else
+ {
+ muCoefficientBL = muCoefficientBL * ((muSpeedBL * muSpeedBL)-1.0);
+ muCoefficientBL = muCoefficientBL + 1.0;
+ muCoefficientBL = muCoefficientBL / (muSpeedBL * muSpeedBL);
+ }
+ muNewSpeedL = muSpeedBL * (muSpeedBL-1);
+ muNewSpeedL = muNewSpeedL + fabs(squaredSampleL*release)+fastest;
+ muSpeedBL = muNewSpeedL / muSpeedBL;
+ }
+ //got coefficients, adjusted speeds for L
+
+ //adjust coefficients for R
+ if (flip)
+ {
+ if (fabs(squaredSampleR) > threshold)
+ {
+ muVaryR = threshold / fabs(squaredSampleR);
+ muAttackR = sqrt(fabs(muSpeedAR));
+ muCoefficientAR = muCoefficientAR * (muAttackR-1.0);
+ if (muVaryR < threshold)
+ {
+ muCoefficientAR = muCoefficientAR + threshold;
+ }
+ else
+ {
+ muCoefficientAR = muCoefficientAR + muVaryR;
+ }
+ muCoefficientAR = muCoefficientAR / muAttackR;
+ }
+ else
+ {
+ muCoefficientAR = muCoefficientAR * ((muSpeedAR * muSpeedAR)-1.0);
+ muCoefficientAR = muCoefficientAR + 1.0;
+ muCoefficientAR = muCoefficientAR / (muSpeedAR * muSpeedAR);
+ }
+ muNewSpeedR = muSpeedAR * (muSpeedAR-1);
+ muNewSpeedR = muNewSpeedR + fabs(squaredSampleR*release)+fastest;
+ muSpeedAR = muNewSpeedR / muSpeedAR;
+ }
+ else
+ {
+ if (fabs(squaredSampleR) > threshold)
+ {
+ muVaryR = threshold / fabs(squaredSampleR);
+ muAttackR = sqrt(fabs(muSpeedBR));
+ muCoefficientBR = muCoefficientBR * (muAttackR-1);
+ if (muVaryR < threshold)
+ {
+ muCoefficientBR = muCoefficientBR + threshold;
+ }
+ else
+ {
+ muCoefficientBR = muCoefficientBR + muVaryR;
+ }
+ muCoefficientBR = muCoefficientBR / muAttackR;
+ }
+ else
+ {
+ muCoefficientBR = muCoefficientBR * ((muSpeedBR * muSpeedBR)-1.0);
+ muCoefficientBR = muCoefficientBR + 1.0;
+ muCoefficientBR = muCoefficientBR / (muSpeedBR * muSpeedBR);
+ }
+ muNewSpeedR = muSpeedBR * (muSpeedBR-1);
+ muNewSpeedR = muNewSpeedR + fabs(squaredSampleR*release)+fastest;
+ muSpeedBR = muNewSpeedR / muSpeedBR;
+ }
+ //got coefficients, adjusted speeds for R
+
+ if (flip)
+ {
+ coefficient = (muCoefficientAL + pow(muCoefficientAL,2))/2.0;
+ inputSampleL *= coefficient;
+ coefficient = (muCoefficientAR + pow(muCoefficientAR,2))/2.0;
+ inputSampleR *= coefficient;
+ }
+ else
+ {
+ coefficient = (muCoefficientBL + pow(muCoefficientBL,2))/2.0;
+ inputSampleL *= coefficient;
+ coefficient = (muCoefficientBR + pow(muCoefficientBR,2))/2.0;
+ inputSampleR *= coefficient;
+ }
+ //applied compression with vari-vari-µ-µ-µ-µ-µ-µ-is-the-kitten-song o/~
+ //applied gain correction to control output level- tends to constrain sound rather than inflate it
+ flip = !flip;
+
+ if (output < 1.0) {
+ inputSampleL *= output;
+ inputSampleR *= output;
+ }
+ if (wet < 1.0) {
+ inputSampleL = (drySampleL * (1.0-wet)) + (inputSampleL * wet);
+ inputSampleR = (drySampleR * (1.0-wet)) + (inputSampleR * wet);
+ }
+ //nice little output stage template: if we have another scale of floating point
+ //number, we really don't want to meaninglessly multiply that by 1.0.
+
+ //noise shaping to 32-bit floating point
+ float fpTemp = inputSampleL;
+ fpNShapeL += (inputSampleL-fpTemp);
+ inputSampleL += fpNShapeL;
+ //if this confuses you look at the wordlength for fpTemp :)
+ fpTemp = inputSampleR;
+ fpNShapeR += (inputSampleR-fpTemp);
+ inputSampleR += fpNShapeR;
+ //for deeper space and warmth, we try a non-oscillating noise shaping
+ //that is kind of ruthless: it will forever retain the rounding errors
+ //except we'll dial it back a hair at the end of every buffer processed
+ //end noise shaping on 32 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+ fpNShapeL *= 0.999999;
+ fpNShapeR *= 0.999999;
+ //we will just delicately dial back the FP noise shaping, not even every sample
+ //this is a good place to put subtle 'no runaway' calculations, though bear in mind
+ //that it will be called more often when you use shorter sample buffers in the DAW.
+ //So, very low latency operation will call these calculations more often.
+}
+
+void VariMu::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames)
+{
+ double* in1 = inputs[0];
+ double* in2 = inputs[1];
+ double* out1 = outputs[0];
+ double* out2 = outputs[1];
+
+ double overallscale = 2.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+
+ double threshold = 1.001 - (1.0-pow(1.0-A,3));
+ double muMakeupGain = sqrt(1.0 / threshold);
+ muMakeupGain = (muMakeupGain + sqrt(muMakeupGain))/2.0;
+ muMakeupGain = sqrt(muMakeupGain);
+ double outGain = sqrt(muMakeupGain);
+ //gain settings around threshold
+ double release = pow((1.15-B),5)*32768.0;
+ release /= overallscale;
+ double fastest = sqrt(release);
+ //speed settings around release
+ double coefficient;
+ double output = outGain * C;
+ double wet = D;
+ long double squaredSampleL;
+ long double squaredSampleR;
+
+ // µ µ µ µ µ µ µ µ µ µ µ µ is the kitten song o/~
+
+ while (--sampleFrames >= 0)
+ {
+ long double inputSampleL = *in1;
+ long double inputSampleR = *in2;
+
+ static int noisesourceL = 0;
+ static int noisesourceR = 850010;
+ int residue;
+ double applyresidue;
+
+ noisesourceL = noisesourceL % 1700021; noisesourceL++;
+ residue = noisesourceL * noisesourceL;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL += applyresidue;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ inputSampleL -= applyresidue;
+ }
+
+ noisesourceR = noisesourceR % 1700021; noisesourceR++;
+ residue = noisesourceR * noisesourceR;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR += applyresidue;
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ inputSampleR -= applyresidue;
+ }
+ //for live air, we always apply the dither noise. Then, if our result is
+ //effectively digital black, we'll subtract it aVariMu. We want a 'air' hiss
+ long double drySampleL = inputSampleL;
+ long double drySampleR = inputSampleR;
+
+ if (fabs(inputSampleL) > fabs(previousL)) squaredSampleL = previousL * previousL;
+ else squaredSampleL = inputSampleL * inputSampleL;
+ previousL = inputSampleL;
+ inputSampleL *= muMakeupGain;
+
+ if (fabs(inputSampleR) > fabs(previousR)) squaredSampleR = previousR * previousR;
+ else squaredSampleR = inputSampleR * inputSampleR;
+ previousR = inputSampleR;
+ inputSampleR *= muMakeupGain;
+
+ //adjust coefficients for L
+ if (flip)
+ {
+ if (fabs(squaredSampleL) > threshold)
+ {
+ muVaryL = threshold / fabs(squaredSampleL);
+ muAttackL = sqrt(fabs(muSpeedAL));
+ muCoefficientAL = muCoefficientAL * (muAttackL-1.0);
+ if (muVaryL < threshold)
+ {
+ muCoefficientAL = muCoefficientAL + threshold;
+ }
+ else
+ {
+ muCoefficientAL = muCoefficientAL + muVaryL;
+ }
+ muCoefficientAL = muCoefficientAL / muAttackL;
+ }
+ else
+ {
+ muCoefficientAL = muCoefficientAL * ((muSpeedAL * muSpeedAL)-1.0);
+ muCoefficientAL = muCoefficientAL + 1.0;
+ muCoefficientAL = muCoefficientAL / (muSpeedAL * muSpeedAL);
+ }
+ muNewSpeedL = muSpeedAL * (muSpeedAL-1);
+ muNewSpeedL = muNewSpeedL + fabs(squaredSampleL*release)+fastest;
+ muSpeedAL = muNewSpeedL / muSpeedAL;
+ }
+ else
+ {
+ if (fabs(squaredSampleL) > threshold)
+ {
+ muVaryL = threshold / fabs(squaredSampleL);
+ muAttackL = sqrt(fabs(muSpeedBL));
+ muCoefficientBL = muCoefficientBL * (muAttackL-1);
+ if (muVaryL < threshold)
+ {
+ muCoefficientBL = muCoefficientBL + threshold;
+ }
+ else
+ {
+ muCoefficientBL = muCoefficientBL + muVaryL;
+ }
+ muCoefficientBL = muCoefficientBL / muAttackL;
+ }
+ else
+ {
+ muCoefficientBL = muCoefficientBL * ((muSpeedBL * muSpeedBL)-1.0);
+ muCoefficientBL = muCoefficientBL + 1.0;
+ muCoefficientBL = muCoefficientBL / (muSpeedBL * muSpeedBL);
+ }
+ muNewSpeedL = muSpeedBL * (muSpeedBL-1);
+ muNewSpeedL = muNewSpeedL + fabs(squaredSampleL*release)+fastest;
+ muSpeedBL = muNewSpeedL / muSpeedBL;
+ }
+ //got coefficients, adjusted speeds for L
+
+ //adjust coefficients for R
+ if (flip)
+ {
+ if (fabs(squaredSampleR) > threshold)
+ {
+ muVaryR = threshold / fabs(squaredSampleR);
+ muAttackR = sqrt(fabs(muSpeedAR));
+ muCoefficientAR = muCoefficientAR * (muAttackR-1.0);
+ if (muVaryR < threshold)
+ {
+ muCoefficientAR = muCoefficientAR + threshold;
+ }
+ else
+ {
+ muCoefficientAR = muCoefficientAR + muVaryR;
+ }
+ muCoefficientAR = muCoefficientAR / muAttackR;
+ }
+ else
+ {
+ muCoefficientAR = muCoefficientAR * ((muSpeedAR * muSpeedAR)-1.0);
+ muCoefficientAR = muCoefficientAR + 1.0;
+ muCoefficientAR = muCoefficientAR / (muSpeedAR * muSpeedAR);
+ }
+ muNewSpeedR = muSpeedAR * (muSpeedAR-1);
+ muNewSpeedR = muNewSpeedR + fabs(squaredSampleR*release)+fastest;
+ muSpeedAR = muNewSpeedR / muSpeedAR;
+ }
+ else
+ {
+ if (fabs(squaredSampleR) > threshold)
+ {
+ muVaryR = threshold / fabs(squaredSampleR);
+ muAttackR = sqrt(fabs(muSpeedBR));
+ muCoefficientBR = muCoefficientBR * (muAttackR-1);
+ if (muVaryR < threshold)
+ {
+ muCoefficientBR = muCoefficientBR + threshold;
+ }
+ else
+ {
+ muCoefficientBR = muCoefficientBR + muVaryR;
+ }
+ muCoefficientBR = muCoefficientBR / muAttackR;
+ }
+ else
+ {
+ muCoefficientBR = muCoefficientBR * ((muSpeedBR * muSpeedBR)-1.0);
+ muCoefficientBR = muCoefficientBR + 1.0;
+ muCoefficientBR = muCoefficientBR / (muSpeedBR * muSpeedBR);
+ }
+ muNewSpeedR = muSpeedBR * (muSpeedBR-1);
+ muNewSpeedR = muNewSpeedR + fabs(squaredSampleR*release)+fastest;
+ muSpeedBR = muNewSpeedR / muSpeedBR;
+ }
+ //got coefficients, adjusted speeds for R
+
+ if (flip)
+ {
+ coefficient = (muCoefficientAL + pow(muCoefficientAL,2))/2.0;
+ inputSampleL *= coefficient;
+ coefficient = (muCoefficientAR + pow(muCoefficientAR,2))/2.0;
+ inputSampleR *= coefficient;
+ }
+ else
+ {
+ coefficient = (muCoefficientBL + pow(muCoefficientBL,2))/2.0;
+ inputSampleL *= coefficient;
+ coefficient = (muCoefficientBR + pow(muCoefficientBR,2))/2.0;
+ inputSampleR *= coefficient;
+ }
+ //applied compression with vari-vari-µ-µ-µ-µ-µ-µ-is-the-kitten-song o/~
+ //applied gain correction to control output level- tends to constrain sound rather than inflate it
+ flip = !flip;
+
+ if (output < 1.0) {
+ inputSampleL *= output;
+ inputSampleR *= output;
+ }
+ if (wet < 1.0) {
+ inputSampleL = (drySampleL * (1.0-wet)) + (inputSampleL * wet);
+ inputSampleR = (drySampleR * (1.0-wet)) + (inputSampleR * wet);
+ }
+ //nice little output stage template: if we have another scale of floating point
+ //number, we really don't want to meaninglessly multiply that by 1.0.
+
+ //noise shaping to 64-bit floating point
+ double fpTemp = inputSampleL;
+ fpNShapeL += (inputSampleL-fpTemp);
+ inputSampleL += fpNShapeL;
+ //if this confuses you look at the wordlength for fpTemp :)
+ fpTemp = inputSampleR;
+ fpNShapeR += (inputSampleR-fpTemp);
+ inputSampleR += fpNShapeR;
+ //for deeper space and warmth, we try a non-oscillating noise shaping
+ //that is kind of ruthless: it will forever retain the rounding errors
+ //except we'll dial it back a hair at the end of every buffer processed
+ //end noise shaping on 64 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+ fpNShapeL *= 0.999999;
+ fpNShapeR *= 0.999999;
+ //we will just delicately dial back the FP noise shaping, not even every sample
+ //this is a good place to put subtle 'no runaway' calculations, though bear in mind
+ //that it will be called more often when you use shorter sample buffers in the DAW.
+ //So, very low latency operation will call these calculations more often.
+}