aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/MacVST/UnBox/source/UnBoxProc.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/MacVST/UnBox/source/UnBoxProc.cpp')
-rwxr-xr-xplugins/MacVST/UnBox/source/UnBoxProc.cpp488
1 files changed, 488 insertions, 0 deletions
diff --git a/plugins/MacVST/UnBox/source/UnBoxProc.cpp b/plugins/MacVST/UnBox/source/UnBoxProc.cpp
new file mode 100755
index 0000000..12133dc
--- /dev/null
+++ b/plugins/MacVST/UnBox/source/UnBoxProc.cpp
@@ -0,0 +1,488 @@
+/* ========================================
+ * UnBox - UnBox.h
+ * Copyright (c) 2016 airwindows, All rights reserved
+ * ======================================== */
+
+#ifndef __UnBox_H
+#include "UnBox.h"
+#endif
+
+void UnBox::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames)
+{
+ float* in1 = inputs[0];
+ float* in2 = inputs[1];
+ float* out1 = outputs[0];
+ float* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+
+ double input = A*2.0;
+ double unbox = B+1.0;
+ unbox *= unbox; //let's get some more gain into this
+ double iirAmount = (unbox*0.00052)/overallscale;
+ double output = C*2.0;
+
+ double treble = unbox; //averaging taps 1-4
+ double gain = treble;
+ if (gain > 1.0) {e[0] = 1.0; gain -= 1.0;} else {e[0] = gain; gain = 0.0;}
+ if (gain > 1.0) {e[1] = 1.0; gain -= 1.0;} else {e[1] = gain; gain = 0.0;}
+ if (gain > 1.0) {e[2] = 1.0; gain -= 1.0;} else {e[2] = gain; gain = 0.0;}
+ if (gain > 1.0) {e[3] = 1.0; gain -= 1.0;} else {e[3] = gain; gain = 0.0;}
+ if (gain > 1.0) {e[4] = 1.0; gain -= 1.0;} else {e[4] = gain; gain = 0.0;}
+ //there, now we have a neat little moving average with remainders
+ if (treble < 1.0) treble = 1.0;
+ e[0] /= treble;
+ e[1] /= treble;
+ e[2] /= treble;
+ e[3] /= treble;
+ e[4] /= treble;
+ //and now it's neatly scaled, too
+
+ treble = unbox*2.0; //averaging taps 1-8
+ gain = treble;
+ if (gain > 1.0) {f[0] = 1.0; gain -= 1.0;} else {f[0] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[1] = 1.0; gain -= 1.0;} else {f[1] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[2] = 1.0; gain -= 1.0;} else {f[2] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[3] = 1.0; gain -= 1.0;} else {f[3] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[4] = 1.0; gain -= 1.0;} else {f[4] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[5] = 1.0; gain -= 1.0;} else {f[5] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[6] = 1.0; gain -= 1.0;} else {f[6] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[7] = 1.0; gain -= 1.0;} else {f[7] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[8] = 1.0; gain -= 1.0;} else {f[8] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[9] = 1.0; gain -= 1.0;} else {f[9] = gain; gain = 0.0;}
+ //there, now we have a neat little moving average with remainders
+ if (treble < 1.0) treble = 1.0;
+ f[0] /= treble;
+ f[1] /= treble;
+ f[2] /= treble;
+ f[3] /= treble;
+ f[4] /= treble;
+ f[5] /= treble;
+ f[6] /= treble;
+ f[7] /= treble;
+ f[8] /= treble;
+ f[9] /= treble;
+ //and now it's neatly scaled, too
+
+ while (--sampleFrames >= 0)
+ {
+ long double inputSampleL = *in1;
+ long double inputSampleR = *in2;
+
+ if (input != 1.0) {inputSampleL *= input; inputSampleR *= input;}
+
+ static int noisesourceL = 0;
+ static int noisesourceR = 850010;
+ int residue;
+ double applyresidue;
+
+ noisesourceL = noisesourceL % 1700021; noisesourceL++;
+ residue = noisesourceL * noisesourceL;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL += applyresidue;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ inputSampleL -= applyresidue;
+ }
+
+ noisesourceR = noisesourceR % 1700021; noisesourceR++;
+ residue = noisesourceR * noisesourceR;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR += applyresidue;
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ inputSampleR -= applyresidue;
+ }
+ //for live air, we always apply the dither noise. Then, if our result is
+ //effectively digital black, we'll subtract it aUnBox. We want a 'air' hiss
+ long double drySampleL = inputSampleL;
+ long double drySampleR = inputSampleR;
+
+ aL[4] = aL[3]; aL[3] = aL[2]; aL[2] = aL[1];
+ aL[1] = aL[0]; aL[0] = inputSampleL;
+ inputSampleL *= e[0];
+ inputSampleL += (aL[1] * e[1]);
+ inputSampleL += (aL[2] * e[2]);
+ inputSampleL += (aL[3] * e[3]);
+ inputSampleL += (aL[4] * e[4]);
+ //this is now an average of inputSampleL
+
+ aR[4] = aR[3]; aR[3] = aR[2]; aR[2] = aR[1];
+ aR[1] = aR[0]; aR[0] = inputSampleR;
+ inputSampleR *= e[0];
+ inputSampleR += (aR[1] * e[1]);
+ inputSampleR += (aR[2] * e[2]);
+ inputSampleR += (aR[3] * e[3]);
+ inputSampleR += (aR[4] * e[4]);
+ //this is now an average of inputSampleR
+
+ bL[4] = bL[3]; bL[3] = bL[2]; bL[2] = bL[1];
+ bL[1] = bL[0]; bL[0] = inputSampleL;
+ inputSampleL *= e[0];
+ inputSampleL += (bL[1] * e[1]);
+ inputSampleL += (bL[2] * e[2]);
+ inputSampleL += (bL[3] * e[3]);
+ inputSampleL += (bL[4] * e[4]);
+ //this is now an average of an average of inputSampleL. Two poles
+
+ bR[4] = bR[3]; bR[3] = bR[2]; bR[2] = bR[1];
+ bR[1] = bR[0]; bR[0] = inputSampleR;
+ inputSampleR *= e[0];
+ inputSampleR += (bR[1] * e[1]);
+ inputSampleR += (bR[2] * e[2]);
+ inputSampleR += (bR[3] * e[3]);
+ inputSampleR += (bR[4] * e[4]);
+ //this is now an average of an average of inputSampleR. Two poles
+
+ inputSampleL *= unbox;
+ inputSampleR *= unbox;
+ //clip to 1.2533141373155 to reach maximum output
+ if (inputSampleL > 1.2533141373155) inputSampleL = 1.2533141373155;
+ if (inputSampleL < -1.2533141373155) inputSampleL = -1.2533141373155;
+ inputSampleL = sin(inputSampleL * fabs(inputSampleL)) / ((inputSampleL == 0.0) ?1:fabs(inputSampleL));
+
+ if (inputSampleR > 1.2533141373155) inputSampleR = 1.2533141373155;
+ if (inputSampleR < -1.2533141373155) inputSampleR = -1.2533141373155;
+ inputSampleR = sin(inputSampleR * fabs(inputSampleR)) / ((inputSampleR == 0.0) ?1:fabs(inputSampleR));
+
+ inputSampleL /= unbox;
+ inputSampleR /= unbox;
+ //now we have a distorted inputSample at the correct volume relative to drySample
+
+ long double accumulatorSampleL = (drySampleL - inputSampleL);
+ cL[9] = cL[8]; cL[8] = cL[7]; cL[7] = cL[6]; cL[6] = cL[5];
+ cL[5] = cL[4]; cL[4] = cL[3]; cL[3] = cL[2]; cL[2] = cL[1];
+ cL[1] = cL[0]; cL[0] = accumulatorSampleL;
+ accumulatorSampleL *= f[0];
+ accumulatorSampleL += (cL[1] * f[1]);
+ accumulatorSampleL += (cL[2] * f[2]);
+ accumulatorSampleL += (cL[3] * f[3]);
+ accumulatorSampleL += (cL[4] * f[4]);
+ accumulatorSampleL += (cL[5] * f[5]);
+ accumulatorSampleL += (cL[6] * f[6]);
+ accumulatorSampleL += (cL[7] * f[7]);
+ accumulatorSampleL += (cL[8] * f[8]);
+ accumulatorSampleL += (cL[9] * f[9]);
+ //this is now an average of all the recent variances from dry
+
+ long double accumulatorSampleR = (drySampleR - inputSampleR);
+ cR[9] = cR[8]; cR[8] = cR[7]; cR[7] = cR[6]; cR[6] = cR[5];
+ cR[5] = cR[4]; cR[4] = cR[3]; cR[3] = cR[2]; cR[2] = cR[1];
+ cR[1] = cR[0]; cR[0] = accumulatorSampleR;
+ accumulatorSampleR *= f[0];
+ accumulatorSampleR += (cR[1] * f[1]);
+ accumulatorSampleR += (cR[2] * f[2]);
+ accumulatorSampleR += (cR[3] * f[3]);
+ accumulatorSampleR += (cR[4] * f[4]);
+ accumulatorSampleR += (cR[5] * f[5]);
+ accumulatorSampleR += (cR[6] * f[6]);
+ accumulatorSampleR += (cR[7] * f[7]);
+ accumulatorSampleR += (cR[8] * f[8]);
+ accumulatorSampleR += (cR[9] * f[9]);
+ //this is now an average of all the recent variances from dry
+
+ iirSampleAL = (iirSampleAL * (1 - iirAmount)) + (accumulatorSampleL * iirAmount);
+ accumulatorSampleL -= iirSampleAL;
+ //two poles of IIR
+
+ iirSampleAR = (iirSampleAR * (1 - iirAmount)) + (accumulatorSampleR * iirAmount);
+ accumulatorSampleR -= iirSampleAR;
+ //two poles of IIR
+
+ iirSampleBL = (iirSampleBL * (1 - iirAmount)) + (accumulatorSampleL * iirAmount);
+ accumulatorSampleL -= iirSampleBL;
+ //highpass section
+
+ iirSampleBR = (iirSampleBR * (1 - iirAmount)) + (accumulatorSampleR * iirAmount);
+ accumulatorSampleR -= iirSampleBR;
+ //highpass section
+ //this is now a highpassed average of all the recent variances from dry
+
+ inputSampleL = drySampleL - accumulatorSampleL;
+ inputSampleR = drySampleR - accumulatorSampleR;
+ //we apply it as one operation, to get the result.
+
+ if (output != 1.0) {inputSampleL *= output; inputSampleR *= output;}
+
+ //noise shaping to 32-bit floating point
+ float fpTemp = inputSampleL;
+ fpNShapeL += (inputSampleL-fpTemp);
+ inputSampleL += fpNShapeL;
+ //if this confuses you look at the wordlength for fpTemp :)
+ fpTemp = inputSampleR;
+ fpNShapeR += (inputSampleR-fpTemp);
+ inputSampleR += fpNShapeR;
+ //for deeper space and warmth, we try a non-oscillating noise shaping
+ //that is kind of ruthless: it will forever retain the rounding errors
+ //except we'll dial it back a hair at the end of every buffer processed
+ //end noise shaping on 32 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+ fpNShapeL *= 0.999999;
+ fpNShapeR *= 0.999999;
+ //we will just delicately dial back the FP noise shaping, not even every sample
+ //this is a good place to put subtle 'no runaway' calculations, though bear in mind
+ //that it will be called more often when you use shorter sample buffers in the DAW.
+ //So, very low latency operation will call these calculations more often.
+}
+
+void UnBox::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames)
+{
+ double* in1 = inputs[0];
+ double* in2 = inputs[1];
+ double* out1 = outputs[0];
+ double* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+
+ double input = A*2.0;
+ double unbox = B+1.0;
+ unbox *= unbox; //let's get some more gain into this
+ double iirAmount = (unbox*0.00052)/overallscale;
+ double output = C*2.0;
+
+ double treble = unbox; //averaging taps 1-4
+ double gain = treble;
+ if (gain > 1.0) {e[0] = 1.0; gain -= 1.0;} else {e[0] = gain; gain = 0.0;}
+ if (gain > 1.0) {e[1] = 1.0; gain -= 1.0;} else {e[1] = gain; gain = 0.0;}
+ if (gain > 1.0) {e[2] = 1.0; gain -= 1.0;} else {e[2] = gain; gain = 0.0;}
+ if (gain > 1.0) {e[3] = 1.0; gain -= 1.0;} else {e[3] = gain; gain = 0.0;}
+ if (gain > 1.0) {e[4] = 1.0; gain -= 1.0;} else {e[4] = gain; gain = 0.0;}
+ //there, now we have a neat little moving average with remainders
+ if (treble < 1.0) treble = 1.0;
+ e[0] /= treble;
+ e[1] /= treble;
+ e[2] /= treble;
+ e[3] /= treble;
+ e[4] /= treble;
+ //and now it's neatly scaled, too
+
+ treble = unbox*2.0; //averaging taps 1-8
+ gain = treble;
+ if (gain > 1.0) {f[0] = 1.0; gain -= 1.0;} else {f[0] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[1] = 1.0; gain -= 1.0;} else {f[1] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[2] = 1.0; gain -= 1.0;} else {f[2] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[3] = 1.0; gain -= 1.0;} else {f[3] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[4] = 1.0; gain -= 1.0;} else {f[4] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[5] = 1.0; gain -= 1.0;} else {f[5] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[6] = 1.0; gain -= 1.0;} else {f[6] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[7] = 1.0; gain -= 1.0;} else {f[7] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[8] = 1.0; gain -= 1.0;} else {f[8] = gain; gain = 0.0;}
+ if (gain > 1.0) {f[9] = 1.0; gain -= 1.0;} else {f[9] = gain; gain = 0.0;}
+ //there, now we have a neat little moving average with remainders
+ if (treble < 1.0) treble = 1.0;
+ f[0] /= treble;
+ f[1] /= treble;
+ f[2] /= treble;
+ f[3] /= treble;
+ f[4] /= treble;
+ f[5] /= treble;
+ f[6] /= treble;
+ f[7] /= treble;
+ f[8] /= treble;
+ f[9] /= treble;
+ //and now it's neatly scaled, too
+
+ while (--sampleFrames >= 0)
+ {
+ long double inputSampleL = *in1;
+ long double inputSampleR = *in2;
+
+ if (input != 1.0) {inputSampleL *= input; inputSampleR *= input;}
+
+ static int noisesourceL = 0;
+ static int noisesourceR = 850010;
+ int residue;
+ double applyresidue;
+
+ noisesourceL = noisesourceL % 1700021; noisesourceL++;
+ residue = noisesourceL * noisesourceL;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL += applyresidue;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ inputSampleL -= applyresidue;
+ }
+
+ noisesourceR = noisesourceR % 1700021; noisesourceR++;
+ residue = noisesourceR * noisesourceR;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR += applyresidue;
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ inputSampleR -= applyresidue;
+ }
+ //for live air, we always apply the dither noise. Then, if our result is
+ //effectively digital black, we'll subtract it aUnBox. We want a 'air' hiss
+ long double drySampleL = inputSampleL;
+ long double drySampleR = inputSampleR;
+
+ aL[4] = aL[3]; aL[3] = aL[2]; aL[2] = aL[1];
+ aL[1] = aL[0]; aL[0] = inputSampleL;
+ inputSampleL *= e[0];
+ inputSampleL += (aL[1] * e[1]);
+ inputSampleL += (aL[2] * e[2]);
+ inputSampleL += (aL[3] * e[3]);
+ inputSampleL += (aL[4] * e[4]);
+ //this is now an average of inputSampleL
+
+ aR[4] = aR[3]; aR[3] = aR[2]; aR[2] = aR[1];
+ aR[1] = aR[0]; aR[0] = inputSampleR;
+ inputSampleR *= e[0];
+ inputSampleR += (aR[1] * e[1]);
+ inputSampleR += (aR[2] * e[2]);
+ inputSampleR += (aR[3] * e[3]);
+ inputSampleR += (aR[4] * e[4]);
+ //this is now an average of inputSampleR
+
+ bL[4] = bL[3]; bL[3] = bL[2]; bL[2] = bL[1];
+ bL[1] = bL[0]; bL[0] = inputSampleL;
+ inputSampleL *= e[0];
+ inputSampleL += (bL[1] * e[1]);
+ inputSampleL += (bL[2] * e[2]);
+ inputSampleL += (bL[3] * e[3]);
+ inputSampleL += (bL[4] * e[4]);
+ //this is now an average of an average of inputSampleL. Two poles
+
+ bR[4] = bR[3]; bR[3] = bR[2]; bR[2] = bR[1];
+ bR[1] = bR[0]; bR[0] = inputSampleR;
+ inputSampleR *= e[0];
+ inputSampleR += (bR[1] * e[1]);
+ inputSampleR += (bR[2] * e[2]);
+ inputSampleR += (bR[3] * e[3]);
+ inputSampleR += (bR[4] * e[4]);
+ //this is now an average of an average of inputSampleR. Two poles
+
+ inputSampleL *= unbox;
+ inputSampleR *= unbox;
+ //clip to 1.2533141373155 to reach maximum output
+ if (inputSampleL > 1.2533141373155) inputSampleL = 1.2533141373155;
+ if (inputSampleL < -1.2533141373155) inputSampleL = -1.2533141373155;
+ inputSampleL = sin(inputSampleL * fabs(inputSampleL)) / ((inputSampleL == 0.0) ?1:fabs(inputSampleL));
+
+ if (inputSampleR > 1.2533141373155) inputSampleR = 1.2533141373155;
+ if (inputSampleR < -1.2533141373155) inputSampleR = -1.2533141373155;
+ inputSampleR = sin(inputSampleR * fabs(inputSampleR)) / ((inputSampleR == 0.0) ?1:fabs(inputSampleR));
+
+ inputSampleL /= unbox;
+ inputSampleR /= unbox;
+ //now we have a distorted inputSample at the correct volume relative to drySample
+
+ long double accumulatorSampleL = (drySampleL - inputSampleL);
+ cL[9] = cL[8]; cL[8] = cL[7]; cL[7] = cL[6]; cL[6] = cL[5];
+ cL[5] = cL[4]; cL[4] = cL[3]; cL[3] = cL[2]; cL[2] = cL[1];
+ cL[1] = cL[0]; cL[0] = accumulatorSampleL;
+ accumulatorSampleL *= f[0];
+ accumulatorSampleL += (cL[1] * f[1]);
+ accumulatorSampleL += (cL[2] * f[2]);
+ accumulatorSampleL += (cL[3] * f[3]);
+ accumulatorSampleL += (cL[4] * f[4]);
+ accumulatorSampleL += (cL[5] * f[5]);
+ accumulatorSampleL += (cL[6] * f[6]);
+ accumulatorSampleL += (cL[7] * f[7]);
+ accumulatorSampleL += (cL[8] * f[8]);
+ accumulatorSampleL += (cL[9] * f[9]);
+ //this is now an average of all the recent variances from dry
+
+ long double accumulatorSampleR = (drySampleR - inputSampleR);
+ cR[9] = cR[8]; cR[8] = cR[7]; cR[7] = cR[6]; cR[6] = cR[5];
+ cR[5] = cR[4]; cR[4] = cR[3]; cR[3] = cR[2]; cR[2] = cR[1];
+ cR[1] = cR[0]; cR[0] = accumulatorSampleR;
+ accumulatorSampleR *= f[0];
+ accumulatorSampleR += (cR[1] * f[1]);
+ accumulatorSampleR += (cR[2] * f[2]);
+ accumulatorSampleR += (cR[3] * f[3]);
+ accumulatorSampleR += (cR[4] * f[4]);
+ accumulatorSampleR += (cR[5] * f[5]);
+ accumulatorSampleR += (cR[6] * f[6]);
+ accumulatorSampleR += (cR[7] * f[7]);
+ accumulatorSampleR += (cR[8] * f[8]);
+ accumulatorSampleR += (cR[9] * f[9]);
+ //this is now an average of all the recent variances from dry
+
+ iirSampleAL = (iirSampleAL * (1 - iirAmount)) + (accumulatorSampleL * iirAmount);
+ accumulatorSampleL -= iirSampleAL;
+ //two poles of IIR
+
+ iirSampleAR = (iirSampleAR * (1 - iirAmount)) + (accumulatorSampleR * iirAmount);
+ accumulatorSampleR -= iirSampleAR;
+ //two poles of IIR
+
+ iirSampleBL = (iirSampleBL * (1 - iirAmount)) + (accumulatorSampleL * iirAmount);
+ accumulatorSampleL -= iirSampleBL;
+ //highpass section
+
+ iirSampleBR = (iirSampleBR * (1 - iirAmount)) + (accumulatorSampleR * iirAmount);
+ accumulatorSampleR -= iirSampleBR;
+ //highpass section
+ //this is now a highpassed average of all the recent variances from dry
+
+ inputSampleL = drySampleL - accumulatorSampleL;
+ inputSampleR = drySampleR - accumulatorSampleR;
+ //we apply it as one operation, to get the result.
+
+ if (output != 1.0) {inputSampleL *= output; inputSampleR *= output;}
+
+ //noise shaping to 64-bit floating point
+ double fpTemp = inputSampleL;
+ fpNShapeL += (inputSampleL-fpTemp);
+ inputSampleL += fpNShapeL;
+ //if this confuses you look at the wordlength for fpTemp :)
+ fpTemp = inputSampleR;
+ fpNShapeR += (inputSampleR-fpTemp);
+ inputSampleR += fpNShapeR;
+ //for deeper space and warmth, we try a non-oscillating noise shaping
+ //that is kind of ruthless: it will forever retain the rounding errors
+ //except we'll dial it back a hair at the end of every buffer processed
+ //end noise shaping on 64 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+ fpNShapeL *= 0.999999;
+ fpNShapeR *= 0.999999;
+ //we will just delicately dial back the FP noise shaping, not even every sample
+ //this is a good place to put subtle 'no runaway' calculations, though bear in mind
+ //that it will be called more often when you use shorter sample buffers in the DAW.
+ //So, very low latency operation will call these calculations more often.
+}