aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/MacVST/Srsly/source/SrslyProc.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/MacVST/Srsly/source/SrslyProc.cpp')
-rwxr-xr-xplugins/MacVST/Srsly/source/SrslyProc.cpp484
1 files changed, 484 insertions, 0 deletions
diff --git a/plugins/MacVST/Srsly/source/SrslyProc.cpp b/plugins/MacVST/Srsly/source/SrslyProc.cpp
new file mode 100755
index 0000000..12a1b30
--- /dev/null
+++ b/plugins/MacVST/Srsly/source/SrslyProc.cpp
@@ -0,0 +1,484 @@
+/* ========================================
+ * Srsly - Srsly.h
+ * Copyright (c) 2016 airwindows, All rights reserved
+ * ======================================== */
+
+#ifndef __Srsly_H
+#include "Srsly.h"
+#endif
+
+void Srsly::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames)
+{
+ float* in1 = inputs[0];
+ float* in2 = inputs[1];
+ float* out1 = outputs[0];
+ float* out2 = outputs[1];
+
+ double sampleRate = getSampleRate();
+ if (sampleRate < 22000) sampleRate = 22000; //keep biquads in range
+ long double tempSample;
+
+ biquadM2[0] = 2000 / sampleRate; //up
+ biquadM7[0] = 7000 / sampleRate; //down
+ biquadM10[0] = 10000 / sampleRate; //down
+
+ biquadL3[0] = 3000 / sampleRate; //up
+ biquadL7[0] = 7000 / sampleRate; //way up
+ biquadR3[0] = 3000 / sampleRate; //up
+ biquadR7[0] = 7000 / sampleRate; //way up
+
+ biquadS3[0] = 3000 / sampleRate; //up
+ biquadS5[0] = 5000 / sampleRate; //way down
+
+ double focusM = 15.0-(A*10.0);
+ double focusS = 21.0-(B*15.0);
+ double Q = D+0.25; //add Q control: from half to double intensity
+ biquadM2[1] = focusM*0.25*Q; //Q, mid 2K boost is much broader
+ biquadM7[1] = focusM*Q; //Q
+ biquadM10[1] = focusM*Q; //Q
+ biquadS3[1] = focusM*Q; //Q
+ biquadS5[1] = focusM*Q; //Q
+
+ biquadL3[1] = focusS*Q; //Q
+ biquadL7[1] = focusS*Q; //Q
+ biquadR3[1] = focusS*Q; //Q
+ biquadR7[1] = focusS*Q; //Q
+
+ double K = tan(M_PI * biquadM2[0]);
+ double norm = 1.0 / (1.0 + K / biquadM2[1] + K * K);
+ biquadM2[2] = K / biquadM2[1] * norm;
+ biquadM2[4] = -biquadM2[2];
+ biquadM2[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadM2[6] = (1.0 - K / biquadM2[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadM7[0]);
+ norm = 1.0 / (1.0 + K / biquadM7[1] + K * K);
+ biquadM7[2] = K / biquadM7[1] * norm;
+ biquadM7[4] = -biquadM7[2];
+ biquadM7[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadM7[6] = (1.0 - K / biquadM7[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadM10[0]);
+ norm = 1.0 / (1.0 + K / biquadM10[1] + K * K);
+ biquadM10[2] = K / biquadM10[1] * norm;
+ biquadM10[4] = -biquadM10[2];
+ biquadM10[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadM10[6] = (1.0 - K / biquadM10[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadL3[0]);
+ norm = 1.0 / (1.0 + K / biquadL3[1] + K * K);
+ biquadL3[2] = K / biquadL3[1] * norm;
+ biquadL3[4] = -biquadL3[2];
+ biquadL3[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadL3[6] = (1.0 - K / biquadL3[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadL7[0]);
+ norm = 1.0 / (1.0 + K / biquadL7[1] + K * K);
+ biquadL7[2] = K / biquadL7[1] * norm;
+ biquadL7[4] = -biquadL7[2];
+ biquadL7[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadL7[6] = (1.0 - K / biquadL7[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadR3[0]);
+ norm = 1.0 / (1.0 + K / biquadR3[1] + K * K);
+ biquadR3[2] = K / biquadR3[1] * norm;
+ biquadR3[4] = -biquadR3[2];
+ biquadR3[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadR3[6] = (1.0 - K / biquadR3[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadR7[0]);
+ norm = 1.0 / (1.0 + K / biquadR7[1] + K * K);
+ biquadR7[2] = K / biquadR7[1] * norm;
+ biquadR7[4] = -biquadR7[2];
+ biquadR7[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadR7[6] = (1.0 - K / biquadR7[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadS3[0]);
+ norm = 1.0 / (1.0 + K / biquadS3[1] + K * K);
+ biquadS3[2] = K / biquadS3[1] * norm;
+ biquadS3[4] = -biquadS3[2];
+ biquadS3[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadS3[6] = (1.0 - K / biquadS3[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadS5[0]);
+ norm = 1.0 / (1.0 + K / biquadS5[1] + K * K);
+ biquadS5[2] = K / biquadS5[1] * norm;
+ biquadS5[4] = -biquadS5[2];
+ biquadS5[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadS5[6] = (1.0 - K / biquadS5[1] + K * K) * norm;
+
+ double depthM = pow(A,2)*2.0;; //proportion to mix in the filtered stuff
+ double depthS = pow(B,2)*2.0;; //proportion to mix in the filtered stuff
+ double level = C; //output pad
+ double wet = E; //dry/wet
+
+ //biquad contains these values:
+ //[0] is frequency: 0.000001 to 0.499999 is near-zero to near-Nyquist
+ //[1] is resonance, 0.7071 is Butterworth. Also can't be zero
+ //[2] is a0 but you need distinct ones for additional biquad instances so it's here
+ //[3] is a1 but you need distinct ones for additional biquad instances so it's here
+ //[4] is a2 but you need distinct ones for additional biquad instances so it's here
+ //[5] is b1 but you need distinct ones for additional biquad instances so it's here
+ //[6] is b2 but you need distinct ones for additional biquad instances so it's here
+ //[7] is LEFT stored delayed sample (freq and res are stored so you can move them sample by sample)
+ //[8] is LEFT stored delayed sample (you have to include the coefficient making code if you do that)
+ //[9] is RIGHT stored delayed sample (freq and res are stored so you can move them sample by sample)
+ //[10] is RIGHT stored delayed sample (you have to include the coefficient making code if you do that)
+
+ while (--sampleFrames >= 0)
+ {
+ long double inputSampleL = *in1;
+ long double inputSampleR = *in2;
+ if (fabs(inputSampleL)<1.18e-37) inputSampleL = fpd * 1.18e-37;
+ if (fabs(inputSampleR)<1.18e-37) inputSampleR = fpd * 1.18e-37;
+ long double drySampleL = inputSampleL;
+ long double drySampleR = inputSampleR;
+
+ inputSampleL = sin(inputSampleL);
+ inputSampleR = sin(inputSampleR);
+ //encode Console5: good cleanness
+
+ long double mid = inputSampleL + inputSampleR;
+ long double rawmid = mid * 0.5; //we'll use this to isolate L&R a little
+ long double side = inputSampleL - inputSampleR;
+ long double boostside = side * depthS;
+ //assign mid and side.Between these sections, you can do mid/side processing
+
+ tempSample = (mid * biquadM2[2]) + biquadM2[7];
+ biquadM2[7] = (-tempSample * biquadM2[5]) + biquadM2[8];
+ biquadM2[8] = (mid * biquadM2[4]) - (tempSample * biquadM2[6]);
+ long double M2Sample = tempSample; //like mono AU, 7 and 8 store L channel
+
+ tempSample = (mid * biquadM7[2]) + biquadM7[7];
+ biquadM7[7] = (-tempSample * biquadM7[5]) + biquadM7[8];
+ biquadM7[8] = (mid * biquadM7[4]) - (tempSample * biquadM7[6]);
+ long double M7Sample = -tempSample*2.0; //like mono AU, 7 and 8 store L channel
+
+ tempSample = (mid * biquadM10[2]) + biquadM10[7];
+ biquadM10[7] = (-tempSample * biquadM10[5]) + biquadM10[8];
+ biquadM10[8] = (mid * biquadM10[4]) - (tempSample * biquadM10[6]);
+ long double M10Sample = -tempSample*2.0; //like mono AU, 7 and 8 store L channel
+ //mid
+
+ tempSample = (side * biquadS3[2]) + biquadS3[7];
+ biquadS3[7] = (-tempSample * biquadS3[5]) + biquadS3[8];
+ biquadS3[8] = (side * biquadS3[4]) - (tempSample * biquadS3[6]);
+ long double S3Sample = tempSample*2.0; //like mono AU, 7 and 8 store L channel
+
+ tempSample = (side * biquadS5[2]) + biquadS5[7];
+ biquadS5[7] = (-tempSample * biquadS5[5]) + biquadS5[8];
+ biquadS5[8] = (side * biquadS5[4]) - (tempSample * biquadS5[6]);
+ long double S5Sample = -tempSample*5.0; //like mono AU, 7 and 8 store L channel
+
+ mid = (M2Sample + M7Sample + M10Sample)*depthM;
+ side = (S3Sample + S5Sample + boostside)*depthS;
+
+ long double msOutSampleL = (mid+side)/2.0;
+ long double msOutSampleR = (mid-side)/2.0;
+ //unassign mid and side
+
+ long double isoSampleL = inputSampleL-rawmid;
+ long double isoSampleR = inputSampleR-rawmid; //trying to isolate L and R a little
+
+ tempSample = (isoSampleL * biquadL3[2]) + biquadL3[7];
+ biquadL3[7] = (-tempSample * biquadL3[5]) + biquadL3[8];
+ biquadL3[8] = (isoSampleL * biquadL3[4]) - (tempSample * biquadL3[6]);
+ long double L3Sample = tempSample; //like mono AU, 7 and 8 store L channel
+
+ tempSample = (isoSampleR * biquadR3[2]) + biquadR3[9];
+ biquadR3[9] = (-tempSample * biquadR3[5]) + biquadR3[10];
+ biquadR3[10] = (isoSampleR * biquadR3[4]) - (tempSample * biquadR3[6]);
+ long double R3Sample = tempSample; //note: 9 and 10 store the R channel
+
+ tempSample = (isoSampleL * biquadL7[2]) + biquadL7[7];
+ biquadL7[7] = (-tempSample * biquadL7[5]) + biquadL7[8];
+ biquadL7[8] = (isoSampleL * biquadL7[4]) - (tempSample * biquadL7[6]);
+ long double L7Sample = tempSample*3.0; //like mono AU, 7 and 8 store L channel
+
+ tempSample = (isoSampleR * biquadR7[2]) + biquadR7[9];
+ biquadR7[9] = (-tempSample * biquadR7[5]) + biquadR7[10];
+ biquadR7[10] = (isoSampleR * biquadR7[4]) - (tempSample * biquadR7[6]);
+ long double R7Sample = tempSample*3.0; //note: 9 and 10 store the R channel
+
+ long double processingL = msOutSampleL + ((L3Sample + L7Sample)*depthS);
+ long double processingR = msOutSampleR + ((R3Sample + R7Sample)*depthS);
+ //done with making filters, now we apply them
+
+ inputSampleL += processingL;
+ inputSampleR += processingR;
+
+ if (level < 1.0) {
+ inputSampleL *= level;
+ inputSampleR *= level;
+ }
+
+ if (inputSampleL > 1.0) inputSampleL = 1.0;
+ if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0;
+ if (inputSampleR < -1.0) inputSampleR = -1.0;
+ //without this, you can get a NaN condition where it spits out DC offset at full blast!
+ inputSampleL = asin(inputSampleL);
+ inputSampleR = asin(inputSampleR);
+ //amplitude aspect
+
+ if (wet < 1.0) {
+ inputSampleL = (inputSampleL * wet)+(drySampleL * (1.0-wet));
+ inputSampleR = (inputSampleR * wet)+(drySampleR * (1.0-wet));
+ }
+
+ //begin 32 bit stereo floating point dither
+ int expon; frexpf((float)inputSampleL, &expon);
+ fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
+ inputSampleL += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62));
+ frexpf((float)inputSampleR, &expon);
+ fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
+ inputSampleR += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62));
+ //end 32 bit stereo floating point dither
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+}
+
+void Srsly::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames)
+{
+ double* in1 = inputs[0];
+ double* in2 = inputs[1];
+ double* out1 = outputs[0];
+ double* out2 = outputs[1];
+
+ double sampleRate = getSampleRate();
+ if (sampleRate < 22000) sampleRate = 22000; //keep biquads in range
+ long double tempSample;
+
+ biquadM2[0] = 2000 / sampleRate; //up
+ biquadM7[0] = 7000 / sampleRate; //down
+ biquadM10[0] = 10000 / sampleRate; //down
+
+ biquadL3[0] = 3000 / sampleRate; //up
+ biquadL7[0] = 7000 / sampleRate; //way up
+ biquadR3[0] = 3000 / sampleRate; //up
+ biquadR7[0] = 7000 / sampleRate; //way up
+
+ biquadS3[0] = 3000 / sampleRate; //up
+ biquadS5[0] = 5000 / sampleRate; //way down
+
+ double focusM = 15.0-(A*10.0);
+ double focusS = 21.0-(B*15.0);
+ double Q = D+0.25; //add Q control: from half to double intensity
+ biquadM2[1] = focusM*0.25*Q; //Q, mid 2K boost is much broader
+ biquadM7[1] = focusM*Q; //Q
+ biquadM10[1] = focusM*Q; //Q
+ biquadS3[1] = focusM*Q; //Q
+ biquadS5[1] = focusM*Q; //Q
+
+ biquadL3[1] = focusS*Q; //Q
+ biquadL7[1] = focusS*Q; //Q
+ biquadR3[1] = focusS*Q; //Q
+ biquadR7[1] = focusS*Q; //Q
+
+ double K = tan(M_PI * biquadM2[0]);
+ double norm = 1.0 / (1.0 + K / biquadM2[1] + K * K);
+ biquadM2[2] = K / biquadM2[1] * norm;
+ biquadM2[4] = -biquadM2[2];
+ biquadM2[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadM2[6] = (1.0 - K / biquadM2[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadM7[0]);
+ norm = 1.0 / (1.0 + K / biquadM7[1] + K * K);
+ biquadM7[2] = K / biquadM7[1] * norm;
+ biquadM7[4] = -biquadM7[2];
+ biquadM7[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadM7[6] = (1.0 - K / biquadM7[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadM10[0]);
+ norm = 1.0 / (1.0 + K / biquadM10[1] + K * K);
+ biquadM10[2] = K / biquadM10[1] * norm;
+ biquadM10[4] = -biquadM10[2];
+ biquadM10[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadM10[6] = (1.0 - K / biquadM10[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadL3[0]);
+ norm = 1.0 / (1.0 + K / biquadL3[1] + K * K);
+ biquadL3[2] = K / biquadL3[1] * norm;
+ biquadL3[4] = -biquadL3[2];
+ biquadL3[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadL3[6] = (1.0 - K / biquadL3[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadL7[0]);
+ norm = 1.0 / (1.0 + K / biquadL7[1] + K * K);
+ biquadL7[2] = K / biquadL7[1] * norm;
+ biquadL7[4] = -biquadL7[2];
+ biquadL7[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadL7[6] = (1.0 - K / biquadL7[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadR3[0]);
+ norm = 1.0 / (1.0 + K / biquadR3[1] + K * K);
+ biquadR3[2] = K / biquadR3[1] * norm;
+ biquadR3[4] = -biquadR3[2];
+ biquadR3[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadR3[6] = (1.0 - K / biquadR3[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadR7[0]);
+ norm = 1.0 / (1.0 + K / biquadR7[1] + K * K);
+ biquadR7[2] = K / biquadR7[1] * norm;
+ biquadR7[4] = -biquadR7[2];
+ biquadR7[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadR7[6] = (1.0 - K / biquadR7[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadS3[0]);
+ norm = 1.0 / (1.0 + K / biquadS3[1] + K * K);
+ biquadS3[2] = K / biquadS3[1] * norm;
+ biquadS3[4] = -biquadS3[2];
+ biquadS3[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadS3[6] = (1.0 - K / biquadS3[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadS5[0]);
+ norm = 1.0 / (1.0 + K / biquadS5[1] + K * K);
+ biquadS5[2] = K / biquadS5[1] * norm;
+ biquadS5[4] = -biquadS5[2];
+ biquadS5[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadS5[6] = (1.0 - K / biquadS5[1] + K * K) * norm;
+
+ double depthM = pow(A,2)*2.0;; //proportion to mix in the filtered stuff
+ double depthS = pow(B,2)*2.0;; //proportion to mix in the filtered stuff
+ double level = C; //output pad
+ double wet = E; //dry/wet
+
+ //biquad contains these values:
+ //[0] is frequency: 0.000001 to 0.499999 is near-zero to near-Nyquist
+ //[1] is resonance, 0.7071 is Butterworth. Also can't be zero
+ //[2] is a0 but you need distinct ones for additional biquad instances so it's here
+ //[3] is a1 but you need distinct ones for additional biquad instances so it's here
+ //[4] is a2 but you need distinct ones for additional biquad instances so it's here
+ //[5] is b1 but you need distinct ones for additional biquad instances so it's here
+ //[6] is b2 but you need distinct ones for additional biquad instances so it's here
+ //[7] is LEFT stored delayed sample (freq and res are stored so you can move them sample by sample)
+ //[8] is LEFT stored delayed sample (you have to include the coefficient making code if you do that)
+ //[9] is RIGHT stored delayed sample (freq and res are stored so you can move them sample by sample)
+ //[10] is RIGHT stored delayed sample (you have to include the coefficient making code if you do that)
+
+ while (--sampleFrames >= 0)
+ {
+ long double inputSampleL = *in1;
+ long double inputSampleR = *in2;
+ if (fabs(inputSampleL)<1.18e-43) inputSampleL = fpd * 1.18e-43;
+ if (fabs(inputSampleR)<1.18e-43) inputSampleR = fpd * 1.18e-43;
+ long double drySampleL = inputSampleL;
+ long double drySampleR = inputSampleR;
+
+ inputSampleL = sin(inputSampleL);
+ inputSampleR = sin(inputSampleR);
+ //encode Console5: good cleanness
+
+ long double mid = inputSampleL + inputSampleR;
+ long double rawmid = mid * 0.5; //we'll use this to isolate L&R a little
+ long double side = inputSampleL - inputSampleR;
+ long double boostside = side * depthS;
+ //assign mid and side.Between these sections, you can do mid/side processing
+
+ tempSample = (mid * biquadM2[2]) + biquadM2[7];
+ biquadM2[7] = (-tempSample * biquadM2[5]) + biquadM2[8];
+ biquadM2[8] = (mid * biquadM2[4]) - (tempSample * biquadM2[6]);
+ long double M2Sample = tempSample; //like mono AU, 7 and 8 store L channel
+
+ tempSample = (mid * biquadM7[2]) + biquadM7[7];
+ biquadM7[7] = (-tempSample * biquadM7[5]) + biquadM7[8];
+ biquadM7[8] = (mid * biquadM7[4]) - (tempSample * biquadM7[6]);
+ long double M7Sample = -tempSample*2.0; //like mono AU, 7 and 8 store L channel
+
+ tempSample = (mid * biquadM10[2]) + biquadM10[7];
+ biquadM10[7] = (-tempSample * biquadM10[5]) + biquadM10[8];
+ biquadM10[8] = (mid * biquadM10[4]) - (tempSample * biquadM10[6]);
+ long double M10Sample = -tempSample*2.0; //like mono AU, 7 and 8 store L channel
+ //mid
+
+ tempSample = (side * biquadS3[2]) + biquadS3[7];
+ biquadS3[7] = (-tempSample * biquadS3[5]) + biquadS3[8];
+ biquadS3[8] = (side * biquadS3[4]) - (tempSample * biquadS3[6]);
+ long double S3Sample = tempSample*2.0; //like mono AU, 7 and 8 store L channel
+
+ tempSample = (side * biquadS5[2]) + biquadS5[7];
+ biquadS5[7] = (-tempSample * biquadS5[5]) + biquadS5[8];
+ biquadS5[8] = (side * biquadS5[4]) - (tempSample * biquadS5[6]);
+ long double S5Sample = -tempSample*5.0; //like mono AU, 7 and 8 store L channel
+
+ mid = (M2Sample + M7Sample + M10Sample)*depthM;
+ side = (S3Sample + S5Sample + boostside)*depthS;
+
+ long double msOutSampleL = (mid+side)/2.0;
+ long double msOutSampleR = (mid-side)/2.0;
+ //unassign mid and side
+
+ long double isoSampleL = inputSampleL-rawmid;
+ long double isoSampleR = inputSampleR-rawmid; //trying to isolate L and R a little
+
+ tempSample = (isoSampleL * biquadL3[2]) + biquadL3[7];
+ biquadL3[7] = (-tempSample * biquadL3[5]) + biquadL3[8];
+ biquadL3[8] = (isoSampleL * biquadL3[4]) - (tempSample * biquadL3[6]);
+ long double L3Sample = tempSample; //like mono AU, 7 and 8 store L channel
+
+ tempSample = (isoSampleR * biquadR3[2]) + biquadR3[9];
+ biquadR3[9] = (-tempSample * biquadR3[5]) + biquadR3[10];
+ biquadR3[10] = (isoSampleR * biquadR3[4]) - (tempSample * biquadR3[6]);
+ long double R3Sample = tempSample; //note: 9 and 10 store the R channel
+
+ tempSample = (isoSampleL * biquadL7[2]) + biquadL7[7];
+ biquadL7[7] = (-tempSample * biquadL7[5]) + biquadL7[8];
+ biquadL7[8] = (isoSampleL * biquadL7[4]) - (tempSample * biquadL7[6]);
+ long double L7Sample = tempSample*3.0; //like mono AU, 7 and 8 store L channel
+
+ tempSample = (isoSampleR * biquadR7[2]) + biquadR7[9];
+ biquadR7[9] = (-tempSample * biquadR7[5]) + biquadR7[10];
+ biquadR7[10] = (isoSampleR * biquadR7[4]) - (tempSample * biquadR7[6]);
+ long double R7Sample = tempSample*3.0; //note: 9 and 10 store the R channel
+
+ long double processingL = msOutSampleL + ((L3Sample + L7Sample)*depthS);
+ long double processingR = msOutSampleR + ((R3Sample + R7Sample)*depthS);
+ //done with making filters, now we apply them
+
+ inputSampleL += processingL;
+ inputSampleR += processingR;
+
+ if (level < 1.0) {
+ inputSampleL *= level;
+ inputSampleR *= level;
+ }
+
+ if (inputSampleL > 1.0) inputSampleL = 1.0;
+ if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0;
+ if (inputSampleR < -1.0) inputSampleR = -1.0;
+ //without this, you can get a NaN condition where it spits out DC offset at full blast!
+ inputSampleL = asin(inputSampleL);
+ inputSampleR = asin(inputSampleR);
+ //amplitude aspect
+
+ if (wet < 1.0) {
+ inputSampleL = (inputSampleL * wet)+(drySampleL * (1.0-wet));
+ inputSampleR = (inputSampleR * wet)+(drySampleR * (1.0-wet));
+ }
+
+ //begin 64 bit stereo floating point dither
+ int expon; frexp((double)inputSampleL, &expon);
+ fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
+ inputSampleL += ((double(fpd)-uint32_t(0x7fffffff)) * 1.1e-44l * pow(2,expon+62));
+ frexp((double)inputSampleR, &expon);
+ fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
+ inputSampleR += ((double(fpd)-uint32_t(0x7fffffff)) * 1.1e-44l * pow(2,expon+62));
+ //end 64 bit stereo floating point dither
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+}