aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/MacVST/Melt/source/MeltProc.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/MacVST/Melt/source/MeltProc.cpp')
-rwxr-xr-xplugins/MacVST/Melt/source/MeltProc.cpp596
1 files changed, 596 insertions, 0 deletions
diff --git a/plugins/MacVST/Melt/source/MeltProc.cpp b/plugins/MacVST/Melt/source/MeltProc.cpp
new file mode 100755
index 0000000..48a1c11
--- /dev/null
+++ b/plugins/MacVST/Melt/source/MeltProc.cpp
@@ -0,0 +1,596 @@
+/* ========================================
+ * Melt - Melt.h
+ * Copyright (c) 2016 airwindows, All rights reserved
+ * ======================================== */
+
+#ifndef __Melt_H
+#include "Melt.h"
+#endif
+
+void Melt::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames)
+{
+ float* in1 = inputs[0];
+ float* in2 = inputs[1];
+ float* out1 = outputs[0];
+ float* out2 = outputs[1];
+
+ double rate = 1 / (pow(A,2) + 0.001);
+ double depthB = (B * 139.5)+2;
+ double depthA = depthB * (1.0 - A);
+ double output = C * 0.05;
+ double wet = D;
+ double dry = 1.0-wet;
+
+ float fpTemp;
+ long double fpOld = 0.618033988749894848204586; //golden ratio!
+ long double fpNew = 1.0 - fpOld;
+
+ long double inputSampleL;
+ long double inputSampleR;
+ long double drySampleL;
+ long double drySampleR;
+
+ minTap[0] = floor(2 * depthA); maxTap[0] = floor(2 * depthB);
+ minTap[1] = floor(3 * depthA); maxTap[1] = floor(3 * depthB);
+ minTap[2] = floor(5 * depthA); maxTap[2] = floor(5 * depthB);
+ minTap[3] = floor(7 * depthA); maxTap[3] = floor(7 * depthB);
+ minTap[4] = floor(11 * depthA); maxTap[4] = floor(11 * depthB);
+ minTap[5] = floor(13 * depthA); maxTap[5] = floor(13 * depthB);
+ minTap[6] = floor(17 * depthA); maxTap[6] = floor(17 * depthB);
+ minTap[7] = floor(19 * depthA); maxTap[7] = floor(19 * depthB);
+ minTap[8] = floor(23 * depthA); maxTap[8] = floor(23 * depthB);
+ minTap[9] = floor(29 * depthA); maxTap[9] = floor(29 * depthB);
+ minTap[10] = floor(31 * depthA); maxTap[10] = floor(31 * depthB);
+ minTap[11] = floor(37 * depthA); maxTap[11] = floor(37 * depthB);
+ minTap[12] = floor(41 * depthA); maxTap[12] = floor(41 * depthB);
+ minTap[13] = floor(43 * depthA); maxTap[13] = floor(43 * depthB);
+ minTap[14] = floor(47 * depthA); maxTap[14] = floor(47 * depthB);
+ minTap[15] = floor(53 * depthA); maxTap[15] = floor(53 * depthB);
+ minTap[16] = floor(59 * depthA); maxTap[16] = floor(59 * depthB);
+ minTap[17] = floor(61 * depthA); maxTap[17] = floor(61 * depthB);
+ minTap[18] = floor(67 * depthA); maxTap[18] = floor(67 * depthB);
+ minTap[19] = floor(71 * depthA); maxTap[19] = floor(71 * depthB);
+ minTap[20] = floor(73 * depthA); maxTap[20] = floor(73 * depthB);
+ minTap[21] = floor(79 * depthA); maxTap[21] = floor(79 * depthB);
+ minTap[22] = floor(83 * depthA); maxTap[22] = floor(83 * depthB);
+ minTap[23] = floor(89 * depthA); maxTap[23] = floor(89 * depthB);
+ minTap[24] = floor(97 * depthA); maxTap[24] = floor(97 * depthB);
+ minTap[25] = floor(101 * depthA); maxTap[25] = floor(101 * depthB);
+ minTap[26] = floor(103 * depthA); maxTap[26] = floor(103 * depthB);
+ minTap[27] = floor(107 * depthA); maxTap[27] = floor(107 * depthB);
+ minTap[28] = floor(109 * depthA); maxTap[28] = floor(109 * depthB);
+ minTap[29] = floor(113 * depthA); maxTap[29] = floor(113 * depthB);
+ minTap[30] = floor(117 * depthA); maxTap[30] = floor(117 * depthB);
+
+ while (--sampleFrames >= 0)
+ {
+ inputSampleL = *in1;
+ inputSampleR = *in2;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ static int noisesource = 0;
+ //this declares a variable before anything else is compiled. It won't keep assigning
+ //it to 0 for every sample, it's as if the declaration doesn't exist in this context,
+ //but it lets me add this denormalization fix in a single place rather than updating
+ //it in three different locations. The variable isn't thread-safe but this is only
+ //a random seed and we can share it with whatever.
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL = applyresidue;
+ }
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ static int noisesource = 0;
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR = applyresidue;
+ //this denormalization routine produces a white noise at -300 dB which the noise
+ //shaping will interact with to produce a bipolar output, but the noise is actually
+ //all positive. That should stop any variables from going denormal, and the routine
+ //only kicks in if digital black is input. As a final touch, if you save to 24-bit
+ //the silence will return to being digital black again.
+ }
+ drySampleL = inputSampleL;
+ drySampleR = inputSampleR;
+
+ if (gcount < 0 || gcount > 16000) {gcount = 16000;}
+ dL[gcount+16000] = dL[gcount] = inputSampleL;
+ dR[gcount+16000] = dR[gcount] = inputSampleR;
+
+ if (slowCount > rate || slowCount < 0) {
+ slowCount = 0;
+ stepCount++;
+ if (stepCount > 29 || stepCount < 0) {stepCount = 0;}
+ position[stepCount] += stepTap[stepCount];
+ if (position[stepCount] < minTap[stepCount]) {
+ position[stepCount] = minTap[stepCount];
+ stepTap[stepCount] = 1;
+ }
+ if (position[stepCount] > maxTap[stepCount]) {
+ position[stepCount] = maxTap[stepCount];
+ stepTap[stepCount] = -1;
+ }
+ }
+
+ //begin L
+ scalefactorL *= 0.9999;
+ scalefactorL += (100.0 - fabs(combineL)) * 0.000001;
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[29]]);
+ combineL += (dL[gcount+position[28]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[27]]);
+ combineL += (dL[gcount+position[26]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[25]]);
+ combineL += (dL[gcount+position[24]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[23]]);
+ combineL += (dL[gcount+position[22]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[21]]);
+ combineL += (dL[gcount+position[20]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[19]]);
+ combineL += (dL[gcount+position[18]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[17]]);
+ combineL += (dL[gcount+position[16]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[15]]);
+ combineL += (dL[gcount+position[14]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[13]]);
+ combineL += (dL[gcount+position[12]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[11]]);
+ combineL += (dL[gcount+position[10]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[9]]);
+ combineL += (dL[gcount+position[8]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[7]]);
+ combineL += (dL[gcount+position[6]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[5]]);
+ combineL += (dL[gcount+position[4]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[3]]);
+ combineL += (dL[gcount+position[2]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[1]]);
+ combineL += (dL[gcount+position[0]]);
+
+ inputSampleL = combineL;
+ //done with L
+
+ //begin R
+ scalefactorR *= 0.9999;
+ scalefactorR += (100.0 - fabs(combineR)) * 0.000001;
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[29]]);
+ combineR += (dR[gcount+position[28]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[27]]);
+ combineR += (dR[gcount+position[26]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[25]]);
+ combineR += (dR[gcount+position[24]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[23]]);
+ combineR += (dR[gcount+position[22]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[21]]);
+ combineR += (dR[gcount+position[20]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[19]]);
+ combineR += (dR[gcount+position[18]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[17]]);
+ combineR += (dR[gcount+position[16]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[15]]);
+ combineR += (dR[gcount+position[14]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[13]]);
+ combineR += (dR[gcount+position[12]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[11]]);
+ combineR += (dR[gcount+position[10]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[9]]);
+ combineR += (dR[gcount+position[8]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[7]]);
+ combineR += (dR[gcount+position[6]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[5]]);
+ combineR += (dR[gcount+position[4]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[3]]);
+ combineR += (dR[gcount+position[2]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[1]]);
+ combineR += (dR[gcount+position[0]]);
+
+ inputSampleR = combineR;
+ //done with R
+
+ gcount--;
+ slowCount++;
+
+ if (output < 1.0) {inputSampleL *= output; inputSampleR *= output;}
+ if (wet < 1.0) {
+ inputSampleL = (drySampleL * dry)+(inputSampleL*wet);
+ inputSampleR = (drySampleR * dry)+(inputSampleR*wet);
+ }
+ //nice little output stage template: if we have another scale of floating point
+ //number, we really don't want to meaninglessly multiply that by 1.0.
+
+ //noise shaping to 32-bit floating point
+ if (fpFlip) {
+ fpTemp = inputSampleL;
+ fpNShapeLA = (fpNShapeLA*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLA;
+ fpTemp = inputSampleR;
+ fpNShapeRA = (fpNShapeRA*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRA;
+ }
+ else {
+ fpTemp = inputSampleL;
+ fpNShapeLB = (fpNShapeLB*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLB;
+ fpTemp = inputSampleR;
+ fpNShapeRB = (fpNShapeRB*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRB;
+ }
+ fpFlip = !fpFlip;
+ //end noise shaping on 32 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+}
+
+void Melt::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames)
+{
+ double* in1 = inputs[0];
+ double* in2 = inputs[1];
+ double* out1 = outputs[0];
+ double* out2 = outputs[1];
+
+ double rate = 1 / (pow(A,2) + 0.001);
+ double depthB = (B * 139.5)+2;
+ double depthA = depthB * (1.0 - A);
+ double output = C * 0.05;
+ double wet = D;
+ double dry = 1.0-wet;
+
+ double fpTemp; //this is different from singlereplacing
+ long double fpOld = 0.618033988749894848204586; //golden ratio!
+ long double fpNew = 1.0 - fpOld;
+
+ long double inputSampleL;
+ long double inputSampleR;
+ long double drySampleL;
+ long double drySampleR;
+
+ minTap[0] = floor(2 * depthA); maxTap[0] = floor(2 * depthB);
+ minTap[1] = floor(3 * depthA); maxTap[1] = floor(3 * depthB);
+ minTap[2] = floor(5 * depthA); maxTap[2] = floor(5 * depthB);
+ minTap[3] = floor(7 * depthA); maxTap[3] = floor(7 * depthB);
+ minTap[4] = floor(11 * depthA); maxTap[4] = floor(11 * depthB);
+ minTap[5] = floor(13 * depthA); maxTap[5] = floor(13 * depthB);
+ minTap[6] = floor(17 * depthA); maxTap[6] = floor(17 * depthB);
+ minTap[7] = floor(19 * depthA); maxTap[7] = floor(19 * depthB);
+ minTap[8] = floor(23 * depthA); maxTap[8] = floor(23 * depthB);
+ minTap[9] = floor(29 * depthA); maxTap[9] = floor(29 * depthB);
+ minTap[10] = floor(31 * depthA); maxTap[10] = floor(31 * depthB);
+ minTap[11] = floor(37 * depthA); maxTap[11] = floor(37 * depthB);
+ minTap[12] = floor(41 * depthA); maxTap[12] = floor(41 * depthB);
+ minTap[13] = floor(43 * depthA); maxTap[13] = floor(43 * depthB);
+ minTap[14] = floor(47 * depthA); maxTap[14] = floor(47 * depthB);
+ minTap[15] = floor(53 * depthA); maxTap[15] = floor(53 * depthB);
+ minTap[16] = floor(59 * depthA); maxTap[16] = floor(59 * depthB);
+ minTap[17] = floor(61 * depthA); maxTap[17] = floor(61 * depthB);
+ minTap[18] = floor(67 * depthA); maxTap[18] = floor(67 * depthB);
+ minTap[19] = floor(71 * depthA); maxTap[19] = floor(71 * depthB);
+ minTap[20] = floor(73 * depthA); maxTap[20] = floor(73 * depthB);
+ minTap[21] = floor(79 * depthA); maxTap[21] = floor(79 * depthB);
+ minTap[22] = floor(83 * depthA); maxTap[22] = floor(83 * depthB);
+ minTap[23] = floor(89 * depthA); maxTap[23] = floor(89 * depthB);
+ minTap[24] = floor(97 * depthA); maxTap[24] = floor(97 * depthB);
+ minTap[25] = floor(101 * depthA); maxTap[25] = floor(101 * depthB);
+ minTap[26] = floor(103 * depthA); maxTap[26] = floor(103 * depthB);
+ minTap[27] = floor(107 * depthA); maxTap[27] = floor(107 * depthB);
+ minTap[28] = floor(109 * depthA); maxTap[28] = floor(109 * depthB);
+ minTap[29] = floor(113 * depthA); maxTap[29] = floor(113 * depthB);
+ minTap[30] = floor(117 * depthA); maxTap[30] = floor(117 * depthB);
+
+ while (--sampleFrames >= 0)
+ {
+ inputSampleL = *in1;
+ inputSampleR = *in2;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ static int noisesource = 0;
+ //this declares a variable before anything else is compiled. It won't keep assigning
+ //it to 0 for every sample, it's as if the declaration doesn't exist in this context,
+ //but it lets me add this denormalization fix in a single place rather than updating
+ //it in three different locations. The variable isn't thread-safe but this is only
+ //a random seed and we can share it with whatever.
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL = applyresidue;
+ }
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ static int noisesource = 0;
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR = applyresidue;
+ //this denormalization routine produces a white noise at -300 dB which the noise
+ //shaping will interact with to produce a bipolar output, but the noise is actually
+ //all positive. That should stop any variables from going denormal, and the routine
+ //only kicks in if digital black is input. As a final touch, if you save to 24-bit
+ //the silence will return to being digital black again.
+ }
+ drySampleL = inputSampleL;
+ drySampleR = inputSampleR;
+
+ if (gcount < 0 || gcount > 16000) {gcount = 16000;}
+ dL[gcount+16000] = dL[gcount] = inputSampleL;
+ dR[gcount+16000] = dR[gcount] = inputSampleR;
+
+ if (slowCount > rate || slowCount < 0) {
+ slowCount = 0;
+ stepCount++;
+ if (stepCount > 29 || stepCount < 0) {stepCount = 0;}
+ position[stepCount] += stepTap[stepCount];
+ if (position[stepCount] < minTap[stepCount]) {
+ position[stepCount] = minTap[stepCount];
+ stepTap[stepCount] = 1;
+ }
+ if (position[stepCount] > maxTap[stepCount]) {
+ position[stepCount] = maxTap[stepCount];
+ stepTap[stepCount] = -1;
+ }
+ }
+
+ //begin L
+ scalefactorL *= 0.9999;
+ scalefactorL += (100.0 - fabs(combineL)) * 0.000001;
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[29]]);
+ combineL += (dL[gcount+position[28]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[27]]);
+ combineL += (dL[gcount+position[26]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[25]]);
+ combineL += (dL[gcount+position[24]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[23]]);
+ combineL += (dL[gcount+position[22]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[21]]);
+ combineL += (dL[gcount+position[20]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[19]]);
+ combineL += (dL[gcount+position[18]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[17]]);
+ combineL += (dL[gcount+position[16]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[15]]);
+ combineL += (dL[gcount+position[14]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[13]]);
+ combineL += (dL[gcount+position[12]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[11]]);
+ combineL += (dL[gcount+position[10]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[9]]);
+ combineL += (dL[gcount+position[8]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[7]]);
+ combineL += (dL[gcount+position[6]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[5]]);
+ combineL += (dL[gcount+position[4]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[3]]);
+ combineL += (dL[gcount+position[2]]);
+
+ combineL *= scalefactorL;
+ combineL -= (dL[gcount+position[1]]);
+ combineL += (dL[gcount+position[0]]);
+
+ inputSampleL = combineL;
+ //done with L
+
+ //begin R
+ scalefactorR *= 0.9999;
+ scalefactorR += (100.0 - fabs(combineR)) * 0.000001;
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[29]]);
+ combineR += (dR[gcount+position[28]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[27]]);
+ combineR += (dR[gcount+position[26]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[25]]);
+ combineR += (dR[gcount+position[24]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[23]]);
+ combineR += (dR[gcount+position[22]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[21]]);
+ combineR += (dR[gcount+position[20]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[19]]);
+ combineR += (dR[gcount+position[18]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[17]]);
+ combineR += (dR[gcount+position[16]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[15]]);
+ combineR += (dR[gcount+position[14]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[13]]);
+ combineR += (dR[gcount+position[12]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[11]]);
+ combineR += (dR[gcount+position[10]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[9]]);
+ combineR += (dR[gcount+position[8]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[7]]);
+ combineR += (dR[gcount+position[6]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[5]]);
+ combineR += (dR[gcount+position[4]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[3]]);
+ combineR += (dR[gcount+position[2]]);
+
+ combineR *= scalefactorR;
+ combineR -= (dR[gcount+position[1]]);
+ combineR += (dR[gcount+position[0]]);
+
+ inputSampleR = combineR;
+ //done with R
+
+ gcount--;
+ slowCount++;
+
+ if (output < 1.0) {inputSampleL *= output; inputSampleR *= output;}
+ if (wet < 1.0) {
+ inputSampleL = (drySampleL * dry)+(inputSampleL*wet);
+ inputSampleR = (drySampleR * dry)+(inputSampleR*wet);
+ }
+ //nice little output stage template: if we have another scale of floating point
+ //number, we really don't want to meaninglessly multiply that by 1.0.
+
+ //noise shaping to 64-bit floating point
+ if (fpFlip) {
+ fpTemp = inputSampleL;
+ fpNShapeLA = (fpNShapeLA*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLA;
+ fpTemp = inputSampleR;
+ fpNShapeRA = (fpNShapeRA*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRA;
+ }
+ else {
+ fpTemp = inputSampleL;
+ fpNShapeLB = (fpNShapeLB*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLB;
+ fpTemp = inputSampleR;
+ fpNShapeRB = (fpNShapeRB*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRB;
+ }
+ fpFlip = !fpFlip;
+ //end noise shaping on 64 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+} \ No newline at end of file