aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/MacVST/Hermepass/source/HermepassProc.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/MacVST/Hermepass/source/HermepassProc.cpp')
-rwxr-xr-xplugins/MacVST/Hermepass/source/HermepassProc.cpp406
1 files changed, 406 insertions, 0 deletions
diff --git a/plugins/MacVST/Hermepass/source/HermepassProc.cpp b/plugins/MacVST/Hermepass/source/HermepassProc.cpp
new file mode 100755
index 0000000..01b35aa
--- /dev/null
+++ b/plugins/MacVST/Hermepass/source/HermepassProc.cpp
@@ -0,0 +1,406 @@
+/* ========================================
+ * Hermepass - Hermepass.h
+ * Copyright (c) 2016 airwindows, All rights reserved
+ * ======================================== */
+
+#ifndef __Hermepass_H
+#include "Hermepass.h"
+#endif
+
+void Hermepass::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames)
+{
+ float* in1 = inputs[0];
+ float* in2 = inputs[1];
+ float* out1 = outputs[0];
+ float* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+ float fpTemp;
+ long double fpOld = 0.618033988749894848204586; //golden ratio!
+ long double fpNew = 1.0 - fpOld;
+
+ double rangescale = 0.1 / overallscale;
+
+ double cutoff = pow(A,3);
+ double slope = pow(B,3) * 6.0;
+
+ double newA = cutoff * rangescale;
+ double newB = newA; //other part of interleaved IIR is the same
+
+ double newC = cutoff * rangescale; //first extra pole is the same
+ cutoff = (cutoff * fpOld) + (0.00001 * fpNew);
+ double newD = cutoff * rangescale;
+ cutoff = (cutoff * fpOld) + (0.00001 * fpNew);
+ double newE = cutoff * rangescale;
+ cutoff = (cutoff * fpOld) + (0.00001 * fpNew);
+ double newF = cutoff * rangescale;
+ cutoff = (cutoff * fpOld) + (0.00001 * fpNew);
+ double newG = cutoff * rangescale;
+ cutoff = (cutoff * fpOld) + (0.00001 * fpNew);
+ double newH = cutoff * rangescale;
+ //converge toward the unvarying fixed cutoff value
+
+ double oldA = 1.0 - newA;
+ double oldB = 1.0 - newB;
+ double oldC = 1.0 - newC;
+ double oldD = 1.0 - newD;
+ double oldE = 1.0 - newE;
+ double oldF = 1.0 - newF;
+ double oldG = 1.0 - newG;
+ double oldH = 1.0 - newH;
+
+ double polesC;
+ double polesD;
+ double polesE;
+ double polesF;
+ double polesG;
+ double polesH;
+
+ polesC = slope; if (slope > 1.0) polesC = 1.0; slope -= 1.0; if (slope < 0.0) slope = 0.0;
+ polesD = slope; if (slope > 1.0) polesD = 1.0; slope -= 1.0; if (slope < 0.0) slope = 0.0;
+ polesE = slope; if (slope > 1.0) polesE = 1.0; slope -= 1.0; if (slope < 0.0) slope = 0.0;
+ polesF = slope; if (slope > 1.0) polesF = 1.0; slope -= 1.0; if (slope < 0.0) slope = 0.0;
+ polesG = slope; if (slope > 1.0) polesG = 1.0; slope -= 1.0; if (slope < 0.0) slope = 0.0;
+ polesH = slope; if (slope > 1.0) polesH = 1.0; slope -= 1.0; if (slope < 0.0) slope = 0.0;
+ //each one will either be 0.0, the fractional slope value, or 1
+
+ long double inputSampleL;
+ long double inputSampleR;
+ double tempSampleL;
+ double tempSampleR;
+ double correction;
+
+ while (--sampleFrames >= 0)
+ {
+ inputSampleL = *in1;
+ inputSampleR = *in2;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ static int noisesource = 0;
+ //this declares a variable before anything else is compiled. It won't keep assigning
+ //it to 0 for every sample, it's as if the declaration doesn't exist in this context,
+ //but it lets me add this denormalization fix in a single place rather than updating
+ //it in three different locations. The variable isn't thread-safe but this is only
+ //a random seed and we can share it with whatever.
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL = applyresidue;
+ }
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ static int noisesource = 0;
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR = applyresidue;
+ //this denormalization routine produces a white noise at -300 dB which the noise
+ //shaping will interact with to produce a bipolar output, but the noise is actually
+ //all positive. That should stop any variables from going denormal, and the routine
+ //only kicks in if digital black is input. As a final touch, if you save to 24-bit
+ //the silence will return to being digital black again.
+ }
+
+ tempSampleL = inputSampleL;
+ tempSampleR = inputSampleR;
+
+ //begin L channel
+ if (fpFlip) {
+ iirAL = (iirAL * oldA) + (tempSampleL * newA); tempSampleL -= iirAL; correction = iirAL;
+ } else {
+ iirBL = (iirBL * oldB) + (tempSampleL * newB); tempSampleL -= iirBL; correction = iirBL;
+ }
+ iirCL = (iirCL * oldC) + (tempSampleL * newC); tempSampleL -= iirCL;
+ iirDL = (iirDL * oldD) + (tempSampleL * newD); tempSampleL -= iirDL;
+ iirEL = (iirEL * oldE) + (tempSampleL * newE); tempSampleL -= iirEL;
+ iirFL = (iirFL * oldF) + (tempSampleL * newF); tempSampleL -= iirFL;
+ iirGL = (iirGL * oldG) + (tempSampleL * newG); tempSampleL -= iirGL;
+ iirHL = (iirHL * oldH) + (tempSampleL * newH); tempSampleL -= iirHL;
+ //set up all the iir filters in case they are used
+
+ if (polesC == 1.0) correction += iirCL; if (polesC > 0.0 && polesC < 1.0) correction += (iirCL * polesC);
+ if (polesD == 1.0) correction += iirDL; if (polesD > 0.0 && polesD < 1.0) correction += (iirDL * polesD);
+ if (polesE == 1.0) correction += iirEL; if (polesE > 0.0 && polesE < 1.0) correction += (iirEL * polesE);
+ if (polesF == 1.0) correction += iirFL; if (polesF > 0.0 && polesF < 1.0) correction += (iirFL * polesF);
+ if (polesG == 1.0) correction += iirGL; if (polesG > 0.0 && polesG < 1.0) correction += (iirGL * polesG);
+ if (polesH == 1.0) correction += iirHL; if (polesH > 0.0 && polesH < 1.0) correction += (iirHL * polesH);
+ //each of these are added directly if they're fully engaged,
+ //multiplied by 0-1 if they are the interpolated one, or skipped if they are beyond the interpolated one.
+ //the purpose is to do all the math at the floating point exponent nearest to the tiny value in use.
+ //also, it's formatted that way to easily substitute the next variable: this could be written as a loop
+ //with everything an array value. However, this makes just as much sense for this few poles.
+
+ inputSampleL -= correction;
+ //end L channel
+
+ //begin R channel
+ if (fpFlip) {
+ iirAR = (iirAR * oldA) + (tempSampleR * newA); tempSampleR -= iirAR; correction = iirAR;
+ } else {
+ iirBR = (iirBR * oldB) + (tempSampleR * newB); tempSampleR -= iirBR; correction = iirBR;
+ }
+ iirCR = (iirCR * oldC) + (tempSampleR * newC); tempSampleR -= iirCR;
+ iirDR = (iirDR * oldD) + (tempSampleR * newD); tempSampleR -= iirDR;
+ iirER = (iirER * oldE) + (tempSampleR * newE); tempSampleR -= iirER;
+ iirFR = (iirFR * oldF) + (tempSampleR * newF); tempSampleR -= iirFR;
+ iirGR = (iirGR * oldG) + (tempSampleR * newG); tempSampleR -= iirGR;
+ iirHR = (iirHR * oldH) + (tempSampleR * newH); tempSampleR -= iirHR;
+ //set up all the iir filters in case they are used
+
+ if (polesC == 1.0) correction += iirCR; if (polesC > 0.0 && polesC < 1.0) correction += (iirCR * polesC);
+ if (polesD == 1.0) correction += iirDR; if (polesD > 0.0 && polesD < 1.0) correction += (iirDR * polesD);
+ if (polesE == 1.0) correction += iirER; if (polesE > 0.0 && polesE < 1.0) correction += (iirER * polesE);
+ if (polesF == 1.0) correction += iirFR; if (polesF > 0.0 && polesF < 1.0) correction += (iirFR * polesF);
+ if (polesG == 1.0) correction += iirGR; if (polesG > 0.0 && polesG < 1.0) correction += (iirGR * polesG);
+ if (polesH == 1.0) correction += iirHR; if (polesH > 0.0 && polesH < 1.0) correction += (iirHR * polesH);
+ //each of these are added directly if they're fully engaged,
+ //multiplied by 0-1 if they are the interpolated one, or skipped if they are beyond the interpolated one.
+ //the purpose is to do all the math at the floating point exponent nearest to the tiny value in use.
+ //also, it's formatted that way to easily substitute the next variable: this could be written as a loop
+ //with everything an array value. However, this makes just as much sense for this few poles.
+
+ inputSampleR -= correction;
+ //end R channel
+
+ //noise shaping to 32-bit floating point
+ if (fpFlip) {
+ fpTemp = inputSampleL;
+ fpNShapeLA = (fpNShapeLA*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLA;
+ fpTemp = inputSampleR;
+ fpNShapeRA = (fpNShapeRA*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRA;
+ }
+ else {
+ fpTemp = inputSampleL;
+ fpNShapeLB = (fpNShapeLB*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLB;
+ fpTemp = inputSampleR;
+ fpNShapeRB = (fpNShapeRB*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRB;
+ }
+ fpFlip = !fpFlip;
+ //end noise shaping on 32 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+}
+
+void Hermepass::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames)
+{
+ double* in1 = inputs[0];
+ double* in2 = inputs[1];
+ double* out1 = outputs[0];
+ double* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+ double fpTemp; //this is different from singlereplacing
+ long double fpOld = 0.618033988749894848204586; //golden ratio!
+ long double fpNew = 1.0 - fpOld;
+
+ double rangescale = 0.1 / overallscale;
+
+ double cutoff = pow(A,3);
+ double slope = pow(B,3) * 6.0;
+
+ double newA = cutoff * rangescale;
+ double newB = newA; //other part of interleaved IIR is the same
+
+ double newC = cutoff * rangescale; //first extra pole is the same
+ cutoff = (cutoff * fpOld) + (0.00001 * fpNew);
+ double newD = cutoff * rangescale;
+ cutoff = (cutoff * fpOld) + (0.00001 * fpNew);
+ double newE = cutoff * rangescale;
+ cutoff = (cutoff * fpOld) + (0.00001 * fpNew);
+ double newF = cutoff * rangescale;
+ cutoff = (cutoff * fpOld) + (0.00001 * fpNew);
+ double newG = cutoff * rangescale;
+ cutoff = (cutoff * fpOld) + (0.00001 * fpNew);
+ double newH = cutoff * rangescale;
+ //converge toward the unvarying fixed cutoff value
+
+ double oldA = 1.0 - newA;
+ double oldB = 1.0 - newB;
+ double oldC = 1.0 - newC;
+ double oldD = 1.0 - newD;
+ double oldE = 1.0 - newE;
+ double oldF = 1.0 - newF;
+ double oldG = 1.0 - newG;
+ double oldH = 1.0 - newH;
+
+ double polesC;
+ double polesD;
+ double polesE;
+ double polesF;
+ double polesG;
+ double polesH;
+
+ polesC = slope; if (slope > 1.0) polesC = 1.0; slope -= 1.0; if (slope < 0.0) slope = 0.0;
+ polesD = slope; if (slope > 1.0) polesD = 1.0; slope -= 1.0; if (slope < 0.0) slope = 0.0;
+ polesE = slope; if (slope > 1.0) polesE = 1.0; slope -= 1.0; if (slope < 0.0) slope = 0.0;
+ polesF = slope; if (slope > 1.0) polesF = 1.0; slope -= 1.0; if (slope < 0.0) slope = 0.0;
+ polesG = slope; if (slope > 1.0) polesG = 1.0; slope -= 1.0; if (slope < 0.0) slope = 0.0;
+ polesH = slope; if (slope > 1.0) polesH = 1.0; slope -= 1.0; if (slope < 0.0) slope = 0.0;
+ //each one will either be 0.0, the fractional slope value, or 1
+
+ long double inputSampleL;
+ long double inputSampleR;
+ double tempSampleL;
+ double tempSampleR;
+ double correction;
+
+ while (--sampleFrames >= 0)
+ {
+ inputSampleL = *in1;
+ inputSampleR = *in2;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ static int noisesource = 0;
+ //this declares a variable before anything else is compiled. It won't keep assigning
+ //it to 0 for every sample, it's as if the declaration doesn't exist in this context,
+ //but it lets me add this denormalization fix in a single place rather than updating
+ //it in three different locations. The variable isn't thread-safe but this is only
+ //a random seed and we can share it with whatever.
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL = applyresidue;
+ }
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ static int noisesource = 0;
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR = applyresidue;
+ //this denormalization routine produces a white noise at -300 dB which the noise
+ //shaping will interact with to produce a bipolar output, but the noise is actually
+ //all positive. That should stop any variables from going denormal, and the routine
+ //only kicks in if digital black is input. As a final touch, if you save to 24-bit
+ //the silence will return to being digital black again.
+ }
+
+ tempSampleL = inputSampleL;
+ tempSampleR = inputSampleR;
+
+ //begin L channel
+ if (fpFlip) {
+ iirAL = (iirAL * oldA) + (tempSampleL * newA); tempSampleL -= iirAL; correction = iirAL;
+ } else {
+ iirBL = (iirBL * oldB) + (tempSampleL * newB); tempSampleL -= iirBL; correction = iirBL;
+ }
+ iirCL = (iirCL * oldC) + (tempSampleL * newC); tempSampleL -= iirCL;
+ iirDL = (iirDL * oldD) + (tempSampleL * newD); tempSampleL -= iirDL;
+ iirEL = (iirEL * oldE) + (tempSampleL * newE); tempSampleL -= iirEL;
+ iirFL = (iirFL * oldF) + (tempSampleL * newF); tempSampleL -= iirFL;
+ iirGL = (iirGL * oldG) + (tempSampleL * newG); tempSampleL -= iirGL;
+ iirHL = (iirHL * oldH) + (tempSampleL * newH); tempSampleL -= iirHL;
+ //set up all the iir filters in case they are used
+
+ if (polesC == 1.0) correction += iirCL; if (polesC > 0.0 && polesC < 1.0) correction += (iirCL * polesC);
+ if (polesD == 1.0) correction += iirDL; if (polesD > 0.0 && polesD < 1.0) correction += (iirDL * polesD);
+ if (polesE == 1.0) correction += iirEL; if (polesE > 0.0 && polesE < 1.0) correction += (iirEL * polesE);
+ if (polesF == 1.0) correction += iirFL; if (polesF > 0.0 && polesF < 1.0) correction += (iirFL * polesF);
+ if (polesG == 1.0) correction += iirGL; if (polesG > 0.0 && polesG < 1.0) correction += (iirGL * polesG);
+ if (polesH == 1.0) correction += iirHL; if (polesH > 0.0 && polesH < 1.0) correction += (iirHL * polesH);
+ //each of these are added directly if they're fully engaged,
+ //multiplied by 0-1 if they are the interpolated one, or skipped if they are beyond the interpolated one.
+ //the purpose is to do all the math at the floating point exponent nearest to the tiny value in use.
+ //also, it's formatted that way to easily substitute the next variable: this could be written as a loop
+ //with everything an array value. However, this makes just as much sense for this few poles.
+
+ inputSampleL -= correction;
+ //end L channel
+
+ //begin R channel
+ if (fpFlip) {
+ iirAR = (iirAR * oldA) + (tempSampleR * newA); tempSampleR -= iirAR; correction = iirAR;
+ } else {
+ iirBR = (iirBR * oldB) + (tempSampleR * newB); tempSampleR -= iirBR; correction = iirBR;
+ }
+ iirCR = (iirCR * oldC) + (tempSampleR * newC); tempSampleR -= iirCR;
+ iirDR = (iirDR * oldD) + (tempSampleR * newD); tempSampleR -= iirDR;
+ iirER = (iirER * oldE) + (tempSampleR * newE); tempSampleR -= iirER;
+ iirFR = (iirFR * oldF) + (tempSampleR * newF); tempSampleR -= iirFR;
+ iirGR = (iirGR * oldG) + (tempSampleR * newG); tempSampleR -= iirGR;
+ iirHR = (iirHR * oldH) + (tempSampleR * newH); tempSampleR -= iirHR;
+ //set up all the iir filters in case they are used
+
+ if (polesC == 1.0) correction += iirCR; if (polesC > 0.0 && polesC < 1.0) correction += (iirCR * polesC);
+ if (polesD == 1.0) correction += iirDR; if (polesD > 0.0 && polesD < 1.0) correction += (iirDR * polesD);
+ if (polesE == 1.0) correction += iirER; if (polesE > 0.0 && polesE < 1.0) correction += (iirER * polesE);
+ if (polesF == 1.0) correction += iirFR; if (polesF > 0.0 && polesF < 1.0) correction += (iirFR * polesF);
+ if (polesG == 1.0) correction += iirGR; if (polesG > 0.0 && polesG < 1.0) correction += (iirGR * polesG);
+ if (polesH == 1.0) correction += iirHR; if (polesH > 0.0 && polesH < 1.0) correction += (iirHR * polesH);
+ //each of these are added directly if they're fully engaged,
+ //multiplied by 0-1 if they are the interpolated one, or skipped if they are beyond the interpolated one.
+ //the purpose is to do all the math at the floating point exponent nearest to the tiny value in use.
+ //also, it's formatted that way to easily substitute the next variable: this could be written as a loop
+ //with everything an array value. However, this makes just as much sense for this few poles.
+
+ inputSampleR -= correction;
+ //end R channel
+
+ //noise shaping to 64-bit floating point
+ if (fpFlip) {
+ fpTemp = inputSampleL;
+ fpNShapeLA = (fpNShapeLA*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLA;
+ fpTemp = inputSampleR;
+ fpNShapeRA = (fpNShapeRA*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRA;
+ }
+ else {
+ fpTemp = inputSampleL;
+ fpNShapeLB = (fpNShapeLB*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLB;
+ fpTemp = inputSampleR;
+ fpNShapeRB = (fpNShapeRB*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRB;
+ }
+ fpFlip = !fpFlip;
+ //end noise shaping on 64 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+} \ No newline at end of file