aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/MacVST/Chorus/source/ChorusProc.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/MacVST/Chorus/source/ChorusProc.cpp')
-rwxr-xr-xplugins/MacVST/Chorus/source/ChorusProc.cpp324
1 files changed, 324 insertions, 0 deletions
diff --git a/plugins/MacVST/Chorus/source/ChorusProc.cpp b/plugins/MacVST/Chorus/source/ChorusProc.cpp
new file mode 100755
index 0000000..aed2bc0
--- /dev/null
+++ b/plugins/MacVST/Chorus/source/ChorusProc.cpp
@@ -0,0 +1,324 @@
+/* ========================================
+ * Chorus - Chorus.h
+ * Copyright (c) 2016 airwindows, All rights reserved
+ * ======================================== */
+
+#ifndef __Chorus_H
+#include "Chorus.h"
+#endif
+
+void Chorus::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames)
+{
+ float* in1 = inputs[0];
+ float* in2 = inputs[1];
+ float* out1 = outputs[0];
+ float* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+
+ double speed = pow(A,4) * 0.001;
+ speed *= overallscale;
+ int loopLimit = (int)(totalsamples * 0.499);
+ int count;
+ double range = pow(B,4) * loopLimit * 0.499;
+ double wet = C;
+ double modulation = range*wet;
+ double dry = 1.0 - wet;
+ double tupi = 3.141592653589793238 * 2.0;
+ double offset;
+ //this is a double buffer so we will be splitting it in two
+
+ float fpTemp;
+ long double fpOld = 0.618033988749894848204586; //golden ratio!
+ long double fpNew = 1.0 - fpOld;
+
+ long double inputSampleL;
+ long double inputSampleR;
+ double drySampleL;
+ double drySampleR;
+
+ while (--sampleFrames >= 0)
+ {
+ inputSampleL = *in1;
+ inputSampleR = *in2;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ static int noisesource = 0;
+ //this declares a variable before anything else is compiled. It won't keep assigning
+ //it to 0 for every sample, it's as if the declaration doesn't exist in this context,
+ //but it lets me add this denormalization fix in a single place rather than updating
+ //it in three different locations. The variable isn't thread-safe but this is only
+ //a random seed and we can share it with whatever.
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL = applyresidue;
+ }
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ static int noisesource = 0;
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR = applyresidue;
+ //this denormalization routine produces a white noise at -300 dB which the noise
+ //shaping will interact with to produce a bipolar output, but the noise is actually
+ //all positive. That should stop any variables from going denormal, and the routine
+ //only kicks in if digital black is input. As a final touch, if you save to 24-bit
+ //the silence will return to being digital black again.
+ }
+ drySampleL = inputSampleL;
+ drySampleR = inputSampleR;
+
+ airFactorL = airPrevL - inputSampleL;
+ if (fpFlip) {airEvenL += airFactorL; airOddL -= airFactorL; airFactorL = airEvenL;}
+ else {airOddL += airFactorL; airEvenL -= airFactorL; airFactorL = airOddL;}
+ airOddL = (airOddL - ((airOddL - airEvenL)/256.0)) / 1.0001;
+ airEvenL = (airEvenL - ((airEvenL - airOddL)/256.0)) / 1.0001;
+ airPrevL = inputSampleL;
+ inputSampleL += (airFactorL*wet);
+ //air, compensates for loss of highs in flanger's interpolation
+
+ airFactorR = airPrevR - inputSampleR;
+ if (fpFlip) {airEvenR += airFactorR; airOddR -= airFactorR; airFactorR = airEvenR;}
+ else {airOddR += airFactorR; airEvenR -= airFactorR; airFactorR = airOddR;}
+ airOddR = (airOddR - ((airOddR - airEvenR)/256.0)) / 1.0001;
+ airEvenR = (airEvenR - ((airEvenR - airOddR)/256.0)) / 1.0001;
+ airPrevR = inputSampleR;
+ inputSampleR += (airFactorR*wet);
+ //air, compensates for loss of highs in flanger's interpolation
+
+ if (gcount < 1 || gcount > loopLimit) {gcount = loopLimit;}
+ count = gcount;
+ dL[count+loopLimit] = dL[count] = inputSampleL;
+ dR[count+loopLimit] = dR[count] = inputSampleR;
+ gcount--;
+ //double buffer
+
+ offset = range + (modulation * sin(sweep));
+ count += (int)floor(offset);
+
+ inputSampleL = dL[count] * (1-(offset-floor(offset))); //less as value moves away from .0
+ inputSampleL += dL[count+1]; //we can assume always using this in one way or another?
+ inputSampleL += (dL[count+2] * (offset-floor(offset))); //greater as value moves away from .0
+ inputSampleL -= (((dL[count]-dL[count+1])-(dL[count+1]-dL[count+2]))/50); //interpolation hacks 'r us
+
+ inputSampleR = dR[count] * (1-(offset-floor(offset))); //less as value moves away from .0
+ inputSampleR += dR[count+1]; //we can assume always using this in one way or another?
+ inputSampleR += (dR[count+2] * (offset-floor(offset))); //greater as value moves away from .0
+ inputSampleR -= (((dR[count]-dR[count+1])-(dR[count+1]-dR[count+2]))/50); //interpolation hacks 'r us
+
+ inputSampleL *= 0.5; //to get a comparable level
+ inputSampleR *= 0.5; //to get a comparable level
+ //sliding
+
+ sweep += speed;
+ if (sweep > tupi){sweep -= tupi;}
+ //still scrolling through the samples, remember
+
+ if (wet !=1.0) {
+ inputSampleL = (inputSampleL * wet) + (drySampleL * dry);
+ inputSampleR = (inputSampleR * wet) + (drySampleR * dry);
+ }
+
+ //noise shaping to 32-bit floating point
+ if (fpFlip) {
+ fpTemp = inputSampleL;
+ fpNShapeLA = (fpNShapeLA*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLA;
+ fpTemp = inputSampleR;
+ fpNShapeRA = (fpNShapeRA*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRA;
+ }
+ else {
+ fpTemp = inputSampleL;
+ fpNShapeLB = (fpNShapeLB*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLB;
+ fpTemp = inputSampleR;
+ fpNShapeRB = (fpNShapeRB*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRB;
+ }
+ fpFlip = !fpFlip;
+ //end noise shaping on 32 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+}
+
+void Chorus::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames)
+{
+ double* in1 = inputs[0];
+ double* in2 = inputs[1];
+ double* out1 = outputs[0];
+ double* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+
+ double speed = pow(A,4) * 0.001;
+ speed *= overallscale;
+ int loopLimit = (int)(totalsamples * 0.499);
+ int count;
+ double range = pow(B,4) * loopLimit * 0.499;
+ double wet = C;
+ double modulation = range*wet;
+ double dry = 1.0 - wet;
+ double tupi = 3.141592653589793238 * 2.0;
+ double offset;
+ //this is a double buffer so we will be splitting it in two
+
+ double fpTemp; //this is different from singlereplacing
+ long double fpOld = 0.618033988749894848204586; //golden ratio!
+ long double fpNew = 1.0 - fpOld;
+
+ long double inputSampleL;
+ long double inputSampleR;
+ double drySampleL;
+ double drySampleR;
+
+ while (--sampleFrames >= 0)
+ {
+ inputSampleL = *in1;
+ inputSampleR = *in2;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ static int noisesource = 0;
+ //this declares a variable before anything else is compiled. It won't keep assigning
+ //it to 0 for every sample, it's as if the declaration doesn't exist in this context,
+ //but it lets me add this denormalization fix in a single place rather than updating
+ //it in three different locations. The variable isn't thread-safe but this is only
+ //a random seed and we can share it with whatever.
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL = applyresidue;
+ }
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ static int noisesource = 0;
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR = applyresidue;
+ //this denormalization routine produces a white noise at -300 dB which the noise
+ //shaping will interact with to produce a bipolar output, but the noise is actually
+ //all positive. That should stop any variables from going denormal, and the routine
+ //only kicks in if digital black is input. As a final touch, if you save to 24-bit
+ //the silence will return to being digital black again.
+ }
+ drySampleL = inputSampleL;
+ drySampleR = inputSampleR;
+
+ airFactorL = airPrevL - inputSampleL;
+ if (fpFlip) {airEvenL += airFactorL; airOddL -= airFactorL; airFactorL = airEvenL;}
+ else {airOddL += airFactorL; airEvenL -= airFactorL; airFactorL = airOddL;}
+ airOddL = (airOddL - ((airOddL - airEvenL)/256.0)) / 1.0001;
+ airEvenL = (airEvenL - ((airEvenL - airOddL)/256.0)) / 1.0001;
+ airPrevL = inputSampleL;
+ inputSampleL += (airFactorL*wet);
+ //air, compensates for loss of highs in flanger's interpolation
+
+ airFactorR = airPrevR - inputSampleR;
+ if (fpFlip) {airEvenR += airFactorR; airOddR -= airFactorR; airFactorR = airEvenR;}
+ else {airOddR += airFactorR; airEvenR -= airFactorR; airFactorR = airOddR;}
+ airOddR = (airOddR - ((airOddR - airEvenR)/256.0)) / 1.0001;
+ airEvenR = (airEvenR - ((airEvenR - airOddR)/256.0)) / 1.0001;
+ airPrevR = inputSampleR;
+ inputSampleR += (airFactorR*wet);
+ //air, compensates for loss of highs in flanger's interpolation
+
+ if (gcount < 1 || gcount > loopLimit) {gcount = loopLimit;}
+ count = gcount;
+ dL[count+loopLimit] = dL[count] = inputSampleL;
+ dR[count+loopLimit] = dR[count] = inputSampleR;
+ gcount--;
+ //double buffer
+
+ offset = range + (modulation * sin(sweep));
+ count += (int)floor(offset);
+
+ inputSampleL = dL[count] * (1-(offset-floor(offset))); //less as value moves away from .0
+ inputSampleL += dL[count+1]; //we can assume always using this in one way or another?
+ inputSampleL += (dL[count+2] * (offset-floor(offset))); //greater as value moves away from .0
+ inputSampleL -= (((dL[count]-dL[count+1])-(dL[count+1]-dL[count+2]))/50); //interpolation hacks 'r us
+
+ inputSampleR = dR[count] * (1-(offset-floor(offset))); //less as value moves away from .0
+ inputSampleR += dR[count+1]; //we can assume always using this in one way or another?
+ inputSampleR += (dR[count+2] * (offset-floor(offset))); //greater as value moves away from .0
+ inputSampleR -= (((dR[count]-dR[count+1])-(dR[count+1]-dR[count+2]))/50); //interpolation hacks 'r us
+
+ inputSampleL *= 0.5; //to get a comparable level
+ inputSampleR *= 0.5; //to get a comparable level
+ //sliding
+
+ sweep += speed;
+ if (sweep > tupi){sweep -= tupi;}
+ //still scrolling through the samples, remember
+
+ if (wet !=1.0) {
+ inputSampleL = (inputSampleL * wet) + (drySampleL * dry);
+ inputSampleR = (inputSampleR * wet) + (drySampleR * dry);
+ }
+
+ //noise shaping to 64-bit floating point
+ if (fpFlip) {
+ fpTemp = inputSampleL;
+ fpNShapeLA = (fpNShapeLA*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLA;
+ fpTemp = inputSampleR;
+ fpNShapeRA = (fpNShapeRA*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRA;
+ }
+ else {
+ fpTemp = inputSampleL;
+ fpNShapeLB = (fpNShapeLB*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLB;
+ fpTemp = inputSampleR;
+ fpNShapeRB = (fpNShapeRB*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRB;
+ }
+ fpFlip = !fpFlip;
+ //end noise shaping on 64 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+} \ No newline at end of file