aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/MacVST/ButterComp/source/ButterCompProc.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/MacVST/ButterComp/source/ButterCompProc.cpp')
-rwxr-xr-xplugins/MacVST/ButterComp/source/ButterCompProc.cpp416
1 files changed, 416 insertions, 0 deletions
diff --git a/plugins/MacVST/ButterComp/source/ButterCompProc.cpp b/plugins/MacVST/ButterComp/source/ButterCompProc.cpp
new file mode 100755
index 0000000..ea52946
--- /dev/null
+++ b/plugins/MacVST/ButterComp/source/ButterCompProc.cpp
@@ -0,0 +1,416 @@
+/* ========================================
+ * ButterComp - ButterComp.h
+ * Copyright (c) 2016 airwindows, All rights reserved
+ * ======================================== */
+
+#ifndef __ButterComp_H
+#include "ButterComp.h"
+#endif
+
+void ButterComp::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames)
+{
+ float* in1 = inputs[0];
+ float* in2 = inputs[1];
+ float* out1 = outputs[0];
+ float* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+ float fpTemp;
+ long double fpOld = 0.618033988749894848204586; //golden ratio!
+ long double fpNew = 1.0 - fpOld;
+
+ double inputposL;
+ double inputnegL;
+ double calcposL;
+ double calcnegL;
+ double outputposL;
+ double outputnegL;
+ long double totalmultiplierL;
+ long double inputSampleL;
+ double drySampleL;
+
+ double inputposR;
+ double inputnegR;
+ double calcposR;
+ double calcnegR;
+ double outputposR;
+ double outputnegR;
+ long double totalmultiplierR;
+ long double inputSampleR;
+ double drySampleR;
+
+ double inputgain = pow(10.0,(A*14.0)/20.0);
+ double wet = B;
+ double dry = 1.0 - wet;
+ double outputgain = inputgain;
+ outputgain -= 1.0;
+ outputgain /= 1.5;
+ outputgain += 1.0;
+ double divisor = 0.012 * (A / 135.0);
+ divisor /= overallscale;
+ double remainder = divisor;
+ divisor = 1.0 - divisor;
+
+ while (--sampleFrames >= 0)
+ {
+ inputSampleL = *in1;
+ inputSampleR = *in2;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ static int noisesource = 0;
+ //this declares a variable before anything else is compiled. It won't keep assigning
+ //it to 0 for every sample, it's as if the declaration doesn't exist in this context,
+ //but it lets me add this denormalization fix in a single place rather than updating
+ //it in three different locations. The variable isn't thread-safe but this is only
+ //a random seed and we can share it with whatever.
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL = applyresidue;
+ }
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ static int noisesource = 0;
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR = applyresidue;
+ //this denormalization routine produces a white noise at -300 dB which the noise
+ //shaping will interact with to produce a bipolar output, but the noise is actually
+ //all positive. That should stop any variables from going denormal, and the routine
+ //only kicks in if digital black is input. As a final touch, if you save to 24-bit
+ //the silence will return to being digital black again.
+ }
+ drySampleL = inputSampleL;
+ drySampleR = inputSampleR;
+
+ inputSampleL *= inputgain;
+ inputSampleR *= inputgain;
+
+ inputposL = inputSampleL + 1.0;
+ if (inputposL < 0.0) inputposL = 0.0;
+ outputposL = inputposL / 2.0;
+ if (outputposL > 1.0) outputposL = 1.0;
+ inputposL *= inputposL;
+ targetposL *= divisor;
+ targetposL += (inputposL * remainder);
+ calcposL = pow((1.0/targetposL),2);
+
+ inputnegL = (-inputSampleL) + 1.0;
+ if (inputnegL < 0.0) inputnegL = 0.0;
+ outputnegL = inputnegL / 2.0;
+ if (outputnegL > 1.0) outputnegL = 1.0;
+ inputnegL *= inputnegL;
+ targetnegL *= divisor;
+ targetnegL += (inputnegL * remainder);
+ calcnegL = pow((1.0/targetnegL),2);
+ //now we have mirrored targets for comp
+ //outputpos and outputneg go from 0 to 1
+
+ inputposR = inputSampleR + 1.0;
+ if (inputposR < 0.0) inputposR = 0.0;
+ outputposR = inputposR / 2.0;
+ if (outputposR > 1.0) outputposR = 1.0;
+ inputposR *= inputposR;
+ targetposR *= divisor;
+ targetposR += (inputposR * remainder);
+ calcposR = pow((1.0/targetposR),2);
+
+ inputnegR = (-inputSampleR) + 1.0;
+ if (inputnegR < 0.0) inputnegR = 0.0;
+ outputnegR = inputnegR / 2.0;
+ if (outputnegR > 1.0) outputnegR = 1.0;
+ inputnegR *= inputnegR;
+ targetnegR *= divisor;
+ targetnegR += (inputnegR * remainder);
+ calcnegR = pow((1.0/targetnegR),2);
+ //now we have mirrored targets for comp
+ //outputpos and outputneg go from 0 to 1
+
+
+ if (inputSampleL > 0)
+ { //working on pos
+ controlAposL *= divisor;
+ controlAposL += (calcposL*remainder);
+ }
+ else
+ { //working on neg
+ controlAnegL *= divisor;
+ controlAnegL += (calcnegL*remainder);
+ }
+ //this causes each of the four to update only when active and in the correct 'flip'
+
+ if (inputSampleR > 0)
+ { //working on pos
+ controlAposR *= divisor;
+ controlAposR += (calcposR*remainder);
+ }
+ else
+ { //working on neg
+ controlAnegR *= divisor;
+ controlAnegR += (calcnegR*remainder);
+ }
+ //this causes each of the four to update only when active and in the correct 'flip'
+
+ totalmultiplierL = (controlAposL * outputposL) + (controlAnegL * outputnegL);
+ totalmultiplierR = (controlAposR * outputposR) + (controlAnegR * outputnegR);
+ //this combines the sides according to flip, blending relative to the input value
+
+ inputSampleL *= totalmultiplierL;
+ inputSampleL /= outputgain;
+
+ inputSampleR *= totalmultiplierR;
+ inputSampleR /= outputgain;
+
+ if (wet !=1.0) {
+ inputSampleL = (inputSampleL * wet) + (drySampleL * dry);
+ inputSampleR = (inputSampleR * wet) + (drySampleR * dry);
+ }
+
+ //noise shaping to 32-bit floating point
+ if (fpFlip) {
+ fpTemp = inputSampleL;
+ fpNShapeLA = (fpNShapeLA*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLA;
+ fpTemp = inputSampleR;
+ fpNShapeRA = (fpNShapeRA*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRA;
+ }
+ else {
+ fpTemp = inputSampleL;
+ fpNShapeLB = (fpNShapeLB*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLB;
+ fpTemp = inputSampleR;
+ fpNShapeRB = (fpNShapeRB*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRB;
+ }
+ fpFlip = !fpFlip;
+ //end noise shaping on 32 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+}
+
+void ButterComp::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames)
+{
+ double* in1 = inputs[0];
+ double* in2 = inputs[1];
+ double* out1 = outputs[0];
+ double* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+ double fpTemp;
+ long double fpOld = 0.618033988749894848204586; //golden ratio!
+ long double fpNew = 1.0 - fpOld;
+
+ double inputposL;
+ double inputnegL;
+ double calcposL;
+ double calcnegL;
+ double outputposL;
+ double outputnegL;
+ long double totalmultiplierL;
+ long double inputSampleL;
+ double drySampleL;
+
+ double inputposR;
+ double inputnegR;
+ double calcposR;
+ double calcnegR;
+ double outputposR;
+ double outputnegR;
+ long double totalmultiplierR;
+ long double inputSampleR;
+ double drySampleR;
+
+ double inputgain = pow(10.0,(A*14.0)/20.0);
+ double wet = B;
+ double dry = 1.0 - wet;
+ double outputgain = inputgain;
+ outputgain -= 1.0;
+ outputgain /= 1.5;
+ outputgain += 1.0;
+ double divisor = 0.012 * (A / 135.0);
+ divisor /= overallscale;
+ double remainder = divisor;
+ divisor = 1.0 - divisor;
+
+ while (--sampleFrames >= 0)
+ {
+ inputSampleL = *in1;
+ inputSampleR = *in2;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ static int noisesource = 0;
+ //this declares a variable before anything else is compiled. It won't keep assigning
+ //it to 0 for every sample, it's as if the declaration doesn't exist in this context,
+ //but it lets me add this denormalization fix in a single place rather than updating
+ //it in three different locations. The variable isn't thread-safe but this is only
+ //a random seed and we can share it with whatever.
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL = applyresidue;
+ }
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ static int noisesource = 0;
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR = applyresidue;
+ //this denormalization routine produces a white noise at -300 dB which the noise
+ //shaping will interact with to produce a bipolar output, but the noise is actually
+ //all positive. That should stop any variables from going denormal, and the routine
+ //only kicks in if digital black is input. As a final touch, if you save to 24-bit
+ //the silence will return to being digital black again.
+ }
+ drySampleL = inputSampleL;
+ drySampleR = inputSampleR;
+
+ inputSampleL *= inputgain;
+ inputSampleR *= inputgain;
+
+ inputposL = inputSampleL + 1.0;
+ if (inputposL < 0.0) inputposL = 0.0;
+ outputposL = inputposL / 2.0;
+ if (outputposL > 1.0) outputposL = 1.0;
+ inputposL *= inputposL;
+ targetposL *= divisor;
+ targetposL += (inputposL * remainder);
+ calcposL = pow((1.0/targetposL),2);
+
+ inputnegL = (-inputSampleL) + 1.0;
+ if (inputnegL < 0.0) inputnegL = 0.0;
+ outputnegL = inputnegL / 2.0;
+ if (outputnegL > 1.0) outputnegL = 1.0;
+ inputnegL *= inputnegL;
+ targetnegL *= divisor;
+ targetnegL += (inputnegL * remainder);
+ calcnegL = pow((1.0/targetnegL),2);
+ //now we have mirrored targets for comp
+ //outputpos and outputneg go from 0 to 1
+
+ inputposR = inputSampleR + 1.0;
+ if (inputposR < 0.0) inputposR = 0.0;
+ outputposR = inputposR / 2.0;
+ if (outputposR > 1.0) outputposR = 1.0;
+ inputposR *= inputposR;
+ targetposR *= divisor;
+ targetposR += (inputposR * remainder);
+ calcposR = pow((1.0/targetposR),2);
+
+ inputnegR = (-inputSampleR) + 1.0;
+ if (inputnegR < 0.0) inputnegR = 0.0;
+ outputnegR = inputnegR / 2.0;
+ if (outputnegR > 1.0) outputnegR = 1.0;
+ inputnegR *= inputnegR;
+ targetnegR *= divisor;
+ targetnegR += (inputnegR * remainder);
+ calcnegR = pow((1.0/targetnegR),2);
+ //now we have mirrored targets for comp
+ //outputpos and outputneg go from 0 to 1
+
+
+ if (inputSampleL > 0)
+ { //working on pos
+ controlAposL *= divisor;
+ controlAposL += (calcposL*remainder);
+ }
+ else
+ { //working on neg
+ controlAnegL *= divisor;
+ controlAnegL += (calcnegL*remainder);
+ }
+ //this causes each of the four to update only when active and in the correct 'flip'
+
+ if (inputSampleR > 0)
+ { //working on pos
+ controlAposR *= divisor;
+ controlAposR += (calcposR*remainder);
+ }
+ else
+ { //working on neg
+ controlAnegR *= divisor;
+ controlAnegR += (calcnegR*remainder);
+ }
+ //this causes each of the four to update only when active and in the correct 'flip'
+
+ totalmultiplierL = (controlAposL * outputposL) + (controlAnegL * outputnegL);
+ totalmultiplierR = (controlAposR * outputposR) + (controlAnegR * outputnegR);
+ //this combines the sides according to flip, blending relative to the input value
+
+ inputSampleL *= totalmultiplierL;
+ inputSampleL /= outputgain;
+
+ inputSampleR *= totalmultiplierR;
+ inputSampleR /= outputgain;
+
+ if (wet !=1.0) {
+ inputSampleL = (inputSampleL * wet) + (drySampleL * dry);
+ inputSampleR = (inputSampleR * wet) + (drySampleR * dry);
+ }
+
+ //noise shaping to 64-bit floating point
+ if (fpFlip) {
+ fpTemp = inputSampleL;
+ fpNShapeLA = (fpNShapeLA*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLA;
+ fpTemp = inputSampleR;
+ fpNShapeRA = (fpNShapeRA*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRA;
+ }
+ else {
+ fpTemp = inputSampleL;
+ fpNShapeLB = (fpNShapeLB*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLB;
+ fpTemp = inputSampleR;
+ fpNShapeRB = (fpNShapeRB*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRB;
+ }
+ fpFlip = !fpFlip;
+ //end noise shaping on 64 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+} \ No newline at end of file