aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/LinuxVST
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/LinuxVST')
-rwxr-xr-xplugins/LinuxVST/CMakeLists.txt1
-rwxr-xr-xplugins/LinuxVST/src/Srsly/Srsly.cpp161
-rwxr-xr-xplugins/LinuxVST/src/Srsly/Srsly.h81
-rwxr-xr-xplugins/LinuxVST/src/Srsly/SrslyProc.cpp484
4 files changed, 727 insertions, 0 deletions
diff --git a/plugins/LinuxVST/CMakeLists.txt b/plugins/LinuxVST/CMakeLists.txt
index 69d0cf3..5c29ac1 100755
--- a/plugins/LinuxVST/CMakeLists.txt
+++ b/plugins/LinuxVST/CMakeLists.txt
@@ -167,6 +167,7 @@ add_airwindows_plugin(SoftGate)
add_airwindows_plugin(SpatializeDither)
add_airwindows_plugin(Spiral)
add_airwindows_plugin(Spiral2)
+add_airwindows_plugin(Srsly)
add_airwindows_plugin(StarChild)
add_airwindows_plugin(StereoFX)
add_airwindows_plugin(StudioTan)
diff --git a/plugins/LinuxVST/src/Srsly/Srsly.cpp b/plugins/LinuxVST/src/Srsly/Srsly.cpp
new file mode 100755
index 0000000..17650aa
--- /dev/null
+++ b/plugins/LinuxVST/src/Srsly/Srsly.cpp
@@ -0,0 +1,161 @@
+/* ========================================
+ * Srsly - Srsly.h
+ * Copyright (c) 2016 airwindows, All rights reserved
+ * ======================================== */
+
+#ifndef __Srsly_H
+#include "Srsly.h"
+#endif
+
+AudioEffect* createEffectInstance(audioMasterCallback audioMaster) {return new Srsly(audioMaster);}
+
+Srsly::Srsly(audioMasterCallback audioMaster) :
+ AudioEffectX(audioMaster, kNumPrograms, kNumParameters)
+{
+ for (int x = 0; x < 11; x++) {
+ biquadM2[x] = 0.0;
+ biquadM7[x] = 0.0;
+ biquadM10[x] = 0.0;
+ biquadL3[x] = 0.0;
+ biquadL7[x] = 0.0;
+ biquadR3[x] = 0.0;
+ biquadR7[x] = 0.0;
+ biquadS3[x] = 0.0;
+ biquadS5[x] = 0.0;
+ }
+ A = 0.0;
+ B = 0.0;
+ C = 1.0;
+ D = 0.5;
+ E = 1.0;
+ fpd = 17;
+ //this is reset: values being initialized only once. Startup values, whatever they are.
+
+ _canDo.insert("plugAsChannelInsert"); // plug-in can be used as a channel insert effect.
+ _canDo.insert("plugAsSend"); // plug-in can be used as a send effect.
+ _canDo.insert("x2in2out");
+ setNumInputs(kNumInputs);
+ setNumOutputs(kNumOutputs);
+ setUniqueID(kUniqueId);
+ canProcessReplacing(); // supports output replacing
+ canDoubleReplacing(); // supports double precision processing
+ programsAreChunks(true);
+ vst_strncpy (_programName, "Default", kVstMaxProgNameLen); // default program name
+}
+
+Srsly::~Srsly() {}
+VstInt32 Srsly::getVendorVersion () {return 1000;}
+void Srsly::setProgramName(char *name) {vst_strncpy (_programName, name, kVstMaxProgNameLen);}
+void Srsly::getProgramName(char *name) {vst_strncpy (name, _programName, kVstMaxProgNameLen);}
+//airwindows likes to ignore this stuff. Make your own programs, and make a different plugin rather than
+//trying to do versioning and preventing people from using older versions. Maybe they like the old one!
+
+static float pinParameter(float data)
+{
+ if (data < 0.0f) return 0.0f;
+ if (data > 1.0f) return 1.0f;
+ return data;
+}
+
+VstInt32 Srsly::getChunk (void** data, bool isPreset)
+{
+ float *chunkData = (float *)calloc(kNumParameters, sizeof(float));
+ chunkData[0] = A;
+ chunkData[1] = B;
+ chunkData[2] = C;
+ chunkData[3] = D;
+ chunkData[4] = E;
+ /* Note: The way this is set up, it will break if you manage to save settings on an Intel
+ machine and load them on a PPC Mac. However, it's fine if you stick to the machine you
+ started with. */
+
+ *data = chunkData;
+ return kNumParameters * sizeof(float);
+}
+
+VstInt32 Srsly::setChunk (void* data, VstInt32 byteSize, bool isPreset)
+{
+ float *chunkData = (float *)data;
+ A = pinParameter(chunkData[0]);
+ B = pinParameter(chunkData[1]);
+ C = pinParameter(chunkData[2]);
+ D = pinParameter(chunkData[3]);
+ E = pinParameter(chunkData[4]);
+ /* We're ignoring byteSize as we found it to be a filthy liar */
+
+ /* calculate any other fields you need here - you could copy in
+ code from setParameter() here. */
+ return 0;
+}
+
+void Srsly::setParameter(VstInt32 index, float value) {
+ switch (index) {
+ case kParamA: A = value; break;
+ case kParamB: B = value; break;
+ case kParamC: C = value; break;
+ case kParamD: D = value; break;
+ case kParamE: E = value; break;
+ default: throw; // unknown parameter, shouldn't happen!
+ }
+}
+
+float Srsly::getParameter(VstInt32 index) {
+ switch (index) {
+ case kParamA: return A; break;
+ case kParamB: return B; break;
+ case kParamC: return C; break;
+ case kParamD: return D; break;
+ case kParamE: return E; break;
+ default: break; // unknown parameter, shouldn't happen!
+ } return 0.0; //we only need to update the relevant name, this is simple to manage
+}
+
+void Srsly::getParameterName(VstInt32 index, char *text) {
+ switch (index) {
+ case kParamA: vst_strncpy (text, "Center", kVstMaxParamStrLen); break;
+ case kParamB: vst_strncpy (text, "Space", kVstMaxParamStrLen); break;
+ case kParamC: vst_strncpy (text, "Level", kVstMaxParamStrLen); break;
+ case kParamD: vst_strncpy (text, "Q", kVstMaxParamStrLen); break;
+ case kParamE: vst_strncpy (text, "Dry/Wet", kVstMaxParamStrLen); break;
+ default: break; // unknown parameter, shouldn't happen!
+ } //this is our labels for displaying in the VST host
+}
+
+void Srsly::getParameterDisplay(VstInt32 index, char *text) {
+ switch (index) {
+ case kParamA: float2string (A, text, kVstMaxParamStrLen); break;
+ case kParamB: float2string (B, text, kVstMaxParamStrLen); break;
+ case kParamC: float2string (C, text, kVstMaxParamStrLen); break;
+ case kParamD: float2string (D, text, kVstMaxParamStrLen); break;
+ case kParamE: float2string (E, text, kVstMaxParamStrLen); break;
+ default: break; // unknown parameter, shouldn't happen!
+ } //this displays the values and handles 'popups' where it's discrete choices
+}
+
+void Srsly::getParameterLabel(VstInt32 index, char *text) {
+ switch (index) {
+ case kParamA: vst_strncpy (text, "", kVstMaxParamStrLen); break;
+ case kParamB: vst_strncpy (text, "", kVstMaxParamStrLen); break;
+ case kParamC: vst_strncpy (text, "", kVstMaxParamStrLen); break;
+ case kParamD: vst_strncpy (text, "", kVstMaxParamStrLen); break;
+ case kParamE: vst_strncpy (text, "", kVstMaxParamStrLen); break;
+ default: break; // unknown parameter, shouldn't happen!
+ }
+}
+
+VstInt32 Srsly::canDo(char *text)
+{ return (_canDo.find(text) == _canDo.end()) ? -1: 1; } // 1 = yes, -1 = no, 0 = don't know
+
+bool Srsly::getEffectName(char* name) {
+ vst_strncpy(name, "Srsly", kVstMaxProductStrLen); return true;
+}
+
+VstPlugCategory Srsly::getPlugCategory() {return kPlugCategEffect;}
+
+bool Srsly::getProductString(char* text) {
+ vst_strncpy (text, "airwindows Srsly", kVstMaxProductStrLen); return true;
+}
+
+bool Srsly::getVendorString(char* text) {
+ vst_strncpy (text, "airwindows", kVstMaxVendorStrLen); return true;
+}
diff --git a/plugins/LinuxVST/src/Srsly/Srsly.h b/plugins/LinuxVST/src/Srsly/Srsly.h
new file mode 100755
index 0000000..292d58c
--- /dev/null
+++ b/plugins/LinuxVST/src/Srsly/Srsly.h
@@ -0,0 +1,81 @@
+/* ========================================
+ * Srsly - Srsly.h
+ * Created 8/12/11 by SPIAdmin
+ * Copyright (c) 2011 __MyCompanyName__, All rights reserved
+ * ======================================== */
+
+#ifndef __Srsly_H
+#define __Srsly_H
+
+#ifndef __audioeffect__
+#include "audioeffectx.h"
+#endif
+
+#include <set>
+#include <string>
+#include <math.h>
+
+enum {
+ kParamA = 0,
+ kParamB = 1,
+ kParamC = 2,
+ kParamD = 3,
+ kParamE = 4,
+ kNumParameters = 5
+}; //
+
+const int kNumPrograms = 0;
+const int kNumInputs = 2;
+const int kNumOutputs = 2;
+const unsigned long kUniqueId = 'srsl'; //Change this to what the AU identity is!
+
+class Srsly :
+ public AudioEffectX
+{
+public:
+ Srsly(audioMasterCallback audioMaster);
+ ~Srsly();
+ virtual bool getEffectName(char* name); // The plug-in name
+ virtual VstPlugCategory getPlugCategory(); // The general category for the plug-in
+ virtual bool getProductString(char* text); // This is a unique plug-in string provided by Steinberg
+ virtual bool getVendorString(char* text); // Vendor info
+ virtual VstInt32 getVendorVersion(); // Version number
+ virtual void processReplacing (float** inputs, float** outputs, VstInt32 sampleFrames);
+ virtual void processDoubleReplacing (double** inputs, double** outputs, VstInt32 sampleFrames);
+ virtual void getProgramName(char *name); // read the name from the host
+ virtual void setProgramName(char *name); // changes the name of the preset displayed in the host
+ virtual VstInt32 getChunk (void** data, bool isPreset);
+ virtual VstInt32 setChunk (void* data, VstInt32 byteSize, bool isPreset);
+ virtual float getParameter(VstInt32 index); // get the parameter value at the specified index
+ virtual void setParameter(VstInt32 index, float value); // set the parameter at index to value
+ virtual void getParameterLabel(VstInt32 index, char *text); // label for the parameter (eg dB)
+ virtual void getParameterName(VstInt32 index, char *text); // name of the parameter
+ virtual void getParameterDisplay(VstInt32 index, char *text); // text description of the current value
+ virtual VstInt32 canDo(char *text);
+private:
+ char _programName[kVstMaxProgNameLen + 1];
+ std::set< std::string > _canDo;
+
+ long double biquadM2[11];
+ long double biquadM7[11];
+ long double biquadM10[11];
+
+ long double biquadL3[11];
+ long double biquadL7[11];
+ long double biquadR3[11];
+ long double biquadR7[11];
+
+ long double biquadS3[11];
+ long double biquadS5[11];
+
+ uint32_t fpd;
+ //default stuff
+
+ float A;
+ float B;
+ float C;
+ float D;
+ float E;
+};
+
+#endif
diff --git a/plugins/LinuxVST/src/Srsly/SrslyProc.cpp b/plugins/LinuxVST/src/Srsly/SrslyProc.cpp
new file mode 100755
index 0000000..12a1b30
--- /dev/null
+++ b/plugins/LinuxVST/src/Srsly/SrslyProc.cpp
@@ -0,0 +1,484 @@
+/* ========================================
+ * Srsly - Srsly.h
+ * Copyright (c) 2016 airwindows, All rights reserved
+ * ======================================== */
+
+#ifndef __Srsly_H
+#include "Srsly.h"
+#endif
+
+void Srsly::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames)
+{
+ float* in1 = inputs[0];
+ float* in2 = inputs[1];
+ float* out1 = outputs[0];
+ float* out2 = outputs[1];
+
+ double sampleRate = getSampleRate();
+ if (sampleRate < 22000) sampleRate = 22000; //keep biquads in range
+ long double tempSample;
+
+ biquadM2[0] = 2000 / sampleRate; //up
+ biquadM7[0] = 7000 / sampleRate; //down
+ biquadM10[0] = 10000 / sampleRate; //down
+
+ biquadL3[0] = 3000 / sampleRate; //up
+ biquadL7[0] = 7000 / sampleRate; //way up
+ biquadR3[0] = 3000 / sampleRate; //up
+ biquadR7[0] = 7000 / sampleRate; //way up
+
+ biquadS3[0] = 3000 / sampleRate; //up
+ biquadS5[0] = 5000 / sampleRate; //way down
+
+ double focusM = 15.0-(A*10.0);
+ double focusS = 21.0-(B*15.0);
+ double Q = D+0.25; //add Q control: from half to double intensity
+ biquadM2[1] = focusM*0.25*Q; //Q, mid 2K boost is much broader
+ biquadM7[1] = focusM*Q; //Q
+ biquadM10[1] = focusM*Q; //Q
+ biquadS3[1] = focusM*Q; //Q
+ biquadS5[1] = focusM*Q; //Q
+
+ biquadL3[1] = focusS*Q; //Q
+ biquadL7[1] = focusS*Q; //Q
+ biquadR3[1] = focusS*Q; //Q
+ biquadR7[1] = focusS*Q; //Q
+
+ double K = tan(M_PI * biquadM2[0]);
+ double norm = 1.0 / (1.0 + K / biquadM2[1] + K * K);
+ biquadM2[2] = K / biquadM2[1] * norm;
+ biquadM2[4] = -biquadM2[2];
+ biquadM2[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadM2[6] = (1.0 - K / biquadM2[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadM7[0]);
+ norm = 1.0 / (1.0 + K / biquadM7[1] + K * K);
+ biquadM7[2] = K / biquadM7[1] * norm;
+ biquadM7[4] = -biquadM7[2];
+ biquadM7[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadM7[6] = (1.0 - K / biquadM7[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadM10[0]);
+ norm = 1.0 / (1.0 + K / biquadM10[1] + K * K);
+ biquadM10[2] = K / biquadM10[1] * norm;
+ biquadM10[4] = -biquadM10[2];
+ biquadM10[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadM10[6] = (1.0 - K / biquadM10[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadL3[0]);
+ norm = 1.0 / (1.0 + K / biquadL3[1] + K * K);
+ biquadL3[2] = K / biquadL3[1] * norm;
+ biquadL3[4] = -biquadL3[2];
+ biquadL3[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadL3[6] = (1.0 - K / biquadL3[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadL7[0]);
+ norm = 1.0 / (1.0 + K / biquadL7[1] + K * K);
+ biquadL7[2] = K / biquadL7[1] * norm;
+ biquadL7[4] = -biquadL7[2];
+ biquadL7[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadL7[6] = (1.0 - K / biquadL7[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadR3[0]);
+ norm = 1.0 / (1.0 + K / biquadR3[1] + K * K);
+ biquadR3[2] = K / biquadR3[1] * norm;
+ biquadR3[4] = -biquadR3[2];
+ biquadR3[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadR3[6] = (1.0 - K / biquadR3[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadR7[0]);
+ norm = 1.0 / (1.0 + K / biquadR7[1] + K * K);
+ biquadR7[2] = K / biquadR7[1] * norm;
+ biquadR7[4] = -biquadR7[2];
+ biquadR7[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadR7[6] = (1.0 - K / biquadR7[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadS3[0]);
+ norm = 1.0 / (1.0 + K / biquadS3[1] + K * K);
+ biquadS3[2] = K / biquadS3[1] * norm;
+ biquadS3[4] = -biquadS3[2];
+ biquadS3[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadS3[6] = (1.0 - K / biquadS3[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadS5[0]);
+ norm = 1.0 / (1.0 + K / biquadS5[1] + K * K);
+ biquadS5[2] = K / biquadS5[1] * norm;
+ biquadS5[4] = -biquadS5[2];
+ biquadS5[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadS5[6] = (1.0 - K / biquadS5[1] + K * K) * norm;
+
+ double depthM = pow(A,2)*2.0;; //proportion to mix in the filtered stuff
+ double depthS = pow(B,2)*2.0;; //proportion to mix in the filtered stuff
+ double level = C; //output pad
+ double wet = E; //dry/wet
+
+ //biquad contains these values:
+ //[0] is frequency: 0.000001 to 0.499999 is near-zero to near-Nyquist
+ //[1] is resonance, 0.7071 is Butterworth. Also can't be zero
+ //[2] is a0 but you need distinct ones for additional biquad instances so it's here
+ //[3] is a1 but you need distinct ones for additional biquad instances so it's here
+ //[4] is a2 but you need distinct ones for additional biquad instances so it's here
+ //[5] is b1 but you need distinct ones for additional biquad instances so it's here
+ //[6] is b2 but you need distinct ones for additional biquad instances so it's here
+ //[7] is LEFT stored delayed sample (freq and res are stored so you can move them sample by sample)
+ //[8] is LEFT stored delayed sample (you have to include the coefficient making code if you do that)
+ //[9] is RIGHT stored delayed sample (freq and res are stored so you can move them sample by sample)
+ //[10] is RIGHT stored delayed sample (you have to include the coefficient making code if you do that)
+
+ while (--sampleFrames >= 0)
+ {
+ long double inputSampleL = *in1;
+ long double inputSampleR = *in2;
+ if (fabs(inputSampleL)<1.18e-37) inputSampleL = fpd * 1.18e-37;
+ if (fabs(inputSampleR)<1.18e-37) inputSampleR = fpd * 1.18e-37;
+ long double drySampleL = inputSampleL;
+ long double drySampleR = inputSampleR;
+
+ inputSampleL = sin(inputSampleL);
+ inputSampleR = sin(inputSampleR);
+ //encode Console5: good cleanness
+
+ long double mid = inputSampleL + inputSampleR;
+ long double rawmid = mid * 0.5; //we'll use this to isolate L&R a little
+ long double side = inputSampleL - inputSampleR;
+ long double boostside = side * depthS;
+ //assign mid and side.Between these sections, you can do mid/side processing
+
+ tempSample = (mid * biquadM2[2]) + biquadM2[7];
+ biquadM2[7] = (-tempSample * biquadM2[5]) + biquadM2[8];
+ biquadM2[8] = (mid * biquadM2[4]) - (tempSample * biquadM2[6]);
+ long double M2Sample = tempSample; //like mono AU, 7 and 8 store L channel
+
+ tempSample = (mid * biquadM7[2]) + biquadM7[7];
+ biquadM7[7] = (-tempSample * biquadM7[5]) + biquadM7[8];
+ biquadM7[8] = (mid * biquadM7[4]) - (tempSample * biquadM7[6]);
+ long double M7Sample = -tempSample*2.0; //like mono AU, 7 and 8 store L channel
+
+ tempSample = (mid * biquadM10[2]) + biquadM10[7];
+ biquadM10[7] = (-tempSample * biquadM10[5]) + biquadM10[8];
+ biquadM10[8] = (mid * biquadM10[4]) - (tempSample * biquadM10[6]);
+ long double M10Sample = -tempSample*2.0; //like mono AU, 7 and 8 store L channel
+ //mid
+
+ tempSample = (side * biquadS3[2]) + biquadS3[7];
+ biquadS3[7] = (-tempSample * biquadS3[5]) + biquadS3[8];
+ biquadS3[8] = (side * biquadS3[4]) - (tempSample * biquadS3[6]);
+ long double S3Sample = tempSample*2.0; //like mono AU, 7 and 8 store L channel
+
+ tempSample = (side * biquadS5[2]) + biquadS5[7];
+ biquadS5[7] = (-tempSample * biquadS5[5]) + biquadS5[8];
+ biquadS5[8] = (side * biquadS5[4]) - (tempSample * biquadS5[6]);
+ long double S5Sample = -tempSample*5.0; //like mono AU, 7 and 8 store L channel
+
+ mid = (M2Sample + M7Sample + M10Sample)*depthM;
+ side = (S3Sample + S5Sample + boostside)*depthS;
+
+ long double msOutSampleL = (mid+side)/2.0;
+ long double msOutSampleR = (mid-side)/2.0;
+ //unassign mid and side
+
+ long double isoSampleL = inputSampleL-rawmid;
+ long double isoSampleR = inputSampleR-rawmid; //trying to isolate L and R a little
+
+ tempSample = (isoSampleL * biquadL3[2]) + biquadL3[7];
+ biquadL3[7] = (-tempSample * biquadL3[5]) + biquadL3[8];
+ biquadL3[8] = (isoSampleL * biquadL3[4]) - (tempSample * biquadL3[6]);
+ long double L3Sample = tempSample; //like mono AU, 7 and 8 store L channel
+
+ tempSample = (isoSampleR * biquadR3[2]) + biquadR3[9];
+ biquadR3[9] = (-tempSample * biquadR3[5]) + biquadR3[10];
+ biquadR3[10] = (isoSampleR * biquadR3[4]) - (tempSample * biquadR3[6]);
+ long double R3Sample = tempSample; //note: 9 and 10 store the R channel
+
+ tempSample = (isoSampleL * biquadL7[2]) + biquadL7[7];
+ biquadL7[7] = (-tempSample * biquadL7[5]) + biquadL7[8];
+ biquadL7[8] = (isoSampleL * biquadL7[4]) - (tempSample * biquadL7[6]);
+ long double L7Sample = tempSample*3.0; //like mono AU, 7 and 8 store L channel
+
+ tempSample = (isoSampleR * biquadR7[2]) + biquadR7[9];
+ biquadR7[9] = (-tempSample * biquadR7[5]) + biquadR7[10];
+ biquadR7[10] = (isoSampleR * biquadR7[4]) - (tempSample * biquadR7[6]);
+ long double R7Sample = tempSample*3.0; //note: 9 and 10 store the R channel
+
+ long double processingL = msOutSampleL + ((L3Sample + L7Sample)*depthS);
+ long double processingR = msOutSampleR + ((R3Sample + R7Sample)*depthS);
+ //done with making filters, now we apply them
+
+ inputSampleL += processingL;
+ inputSampleR += processingR;
+
+ if (level < 1.0) {
+ inputSampleL *= level;
+ inputSampleR *= level;
+ }
+
+ if (inputSampleL > 1.0) inputSampleL = 1.0;
+ if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0;
+ if (inputSampleR < -1.0) inputSampleR = -1.0;
+ //without this, you can get a NaN condition where it spits out DC offset at full blast!
+ inputSampleL = asin(inputSampleL);
+ inputSampleR = asin(inputSampleR);
+ //amplitude aspect
+
+ if (wet < 1.0) {
+ inputSampleL = (inputSampleL * wet)+(drySampleL * (1.0-wet));
+ inputSampleR = (inputSampleR * wet)+(drySampleR * (1.0-wet));
+ }
+
+ //begin 32 bit stereo floating point dither
+ int expon; frexpf((float)inputSampleL, &expon);
+ fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
+ inputSampleL += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62));
+ frexpf((float)inputSampleR, &expon);
+ fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
+ inputSampleR += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62));
+ //end 32 bit stereo floating point dither
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+}
+
+void Srsly::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames)
+{
+ double* in1 = inputs[0];
+ double* in2 = inputs[1];
+ double* out1 = outputs[0];
+ double* out2 = outputs[1];
+
+ double sampleRate = getSampleRate();
+ if (sampleRate < 22000) sampleRate = 22000; //keep biquads in range
+ long double tempSample;
+
+ biquadM2[0] = 2000 / sampleRate; //up
+ biquadM7[0] = 7000 / sampleRate; //down
+ biquadM10[0] = 10000 / sampleRate; //down
+
+ biquadL3[0] = 3000 / sampleRate; //up
+ biquadL7[0] = 7000 / sampleRate; //way up
+ biquadR3[0] = 3000 / sampleRate; //up
+ biquadR7[0] = 7000 / sampleRate; //way up
+
+ biquadS3[0] = 3000 / sampleRate; //up
+ biquadS5[0] = 5000 / sampleRate; //way down
+
+ double focusM = 15.0-(A*10.0);
+ double focusS = 21.0-(B*15.0);
+ double Q = D+0.25; //add Q control: from half to double intensity
+ biquadM2[1] = focusM*0.25*Q; //Q, mid 2K boost is much broader
+ biquadM7[1] = focusM*Q; //Q
+ biquadM10[1] = focusM*Q; //Q
+ biquadS3[1] = focusM*Q; //Q
+ biquadS5[1] = focusM*Q; //Q
+
+ biquadL3[1] = focusS*Q; //Q
+ biquadL7[1] = focusS*Q; //Q
+ biquadR3[1] = focusS*Q; //Q
+ biquadR7[1] = focusS*Q; //Q
+
+ double K = tan(M_PI * biquadM2[0]);
+ double norm = 1.0 / (1.0 + K / biquadM2[1] + K * K);
+ biquadM2[2] = K / biquadM2[1] * norm;
+ biquadM2[4] = -biquadM2[2];
+ biquadM2[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadM2[6] = (1.0 - K / biquadM2[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadM7[0]);
+ norm = 1.0 / (1.0 + K / biquadM7[1] + K * K);
+ biquadM7[2] = K / biquadM7[1] * norm;
+ biquadM7[4] = -biquadM7[2];
+ biquadM7[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadM7[6] = (1.0 - K / biquadM7[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadM10[0]);
+ norm = 1.0 / (1.0 + K / biquadM10[1] + K * K);
+ biquadM10[2] = K / biquadM10[1] * norm;
+ biquadM10[4] = -biquadM10[2];
+ biquadM10[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadM10[6] = (1.0 - K / biquadM10[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadL3[0]);
+ norm = 1.0 / (1.0 + K / biquadL3[1] + K * K);
+ biquadL3[2] = K / biquadL3[1] * norm;
+ biquadL3[4] = -biquadL3[2];
+ biquadL3[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadL3[6] = (1.0 - K / biquadL3[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadL7[0]);
+ norm = 1.0 / (1.0 + K / biquadL7[1] + K * K);
+ biquadL7[2] = K / biquadL7[1] * norm;
+ biquadL7[4] = -biquadL7[2];
+ biquadL7[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadL7[6] = (1.0 - K / biquadL7[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadR3[0]);
+ norm = 1.0 / (1.0 + K / biquadR3[1] + K * K);
+ biquadR3[2] = K / biquadR3[1] * norm;
+ biquadR3[4] = -biquadR3[2];
+ biquadR3[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadR3[6] = (1.0 - K / biquadR3[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadR7[0]);
+ norm = 1.0 / (1.0 + K / biquadR7[1] + K * K);
+ biquadR7[2] = K / biquadR7[1] * norm;
+ biquadR7[4] = -biquadR7[2];
+ biquadR7[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadR7[6] = (1.0 - K / biquadR7[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadS3[0]);
+ norm = 1.0 / (1.0 + K / biquadS3[1] + K * K);
+ biquadS3[2] = K / biquadS3[1] * norm;
+ biquadS3[4] = -biquadS3[2];
+ biquadS3[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadS3[6] = (1.0 - K / biquadS3[1] + K * K) * norm;
+
+ K = tan(M_PI * biquadS5[0]);
+ norm = 1.0 / (1.0 + K / biquadS5[1] + K * K);
+ biquadS5[2] = K / biquadS5[1] * norm;
+ biquadS5[4] = -biquadS5[2];
+ biquadS5[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadS5[6] = (1.0 - K / biquadS5[1] + K * K) * norm;
+
+ double depthM = pow(A,2)*2.0;; //proportion to mix in the filtered stuff
+ double depthS = pow(B,2)*2.0;; //proportion to mix in the filtered stuff
+ double level = C; //output pad
+ double wet = E; //dry/wet
+
+ //biquad contains these values:
+ //[0] is frequency: 0.000001 to 0.499999 is near-zero to near-Nyquist
+ //[1] is resonance, 0.7071 is Butterworth. Also can't be zero
+ //[2] is a0 but you need distinct ones for additional biquad instances so it's here
+ //[3] is a1 but you need distinct ones for additional biquad instances so it's here
+ //[4] is a2 but you need distinct ones for additional biquad instances so it's here
+ //[5] is b1 but you need distinct ones for additional biquad instances so it's here
+ //[6] is b2 but you need distinct ones for additional biquad instances so it's here
+ //[7] is LEFT stored delayed sample (freq and res are stored so you can move them sample by sample)
+ //[8] is LEFT stored delayed sample (you have to include the coefficient making code if you do that)
+ //[9] is RIGHT stored delayed sample (freq and res are stored so you can move them sample by sample)
+ //[10] is RIGHT stored delayed sample (you have to include the coefficient making code if you do that)
+
+ while (--sampleFrames >= 0)
+ {
+ long double inputSampleL = *in1;
+ long double inputSampleR = *in2;
+ if (fabs(inputSampleL)<1.18e-43) inputSampleL = fpd * 1.18e-43;
+ if (fabs(inputSampleR)<1.18e-43) inputSampleR = fpd * 1.18e-43;
+ long double drySampleL = inputSampleL;
+ long double drySampleR = inputSampleR;
+
+ inputSampleL = sin(inputSampleL);
+ inputSampleR = sin(inputSampleR);
+ //encode Console5: good cleanness
+
+ long double mid = inputSampleL + inputSampleR;
+ long double rawmid = mid * 0.5; //we'll use this to isolate L&R a little
+ long double side = inputSampleL - inputSampleR;
+ long double boostside = side * depthS;
+ //assign mid and side.Between these sections, you can do mid/side processing
+
+ tempSample = (mid * biquadM2[2]) + biquadM2[7];
+ biquadM2[7] = (-tempSample * biquadM2[5]) + biquadM2[8];
+ biquadM2[8] = (mid * biquadM2[4]) - (tempSample * biquadM2[6]);
+ long double M2Sample = tempSample; //like mono AU, 7 and 8 store L channel
+
+ tempSample = (mid * biquadM7[2]) + biquadM7[7];
+ biquadM7[7] = (-tempSample * biquadM7[5]) + biquadM7[8];
+ biquadM7[8] = (mid * biquadM7[4]) - (tempSample * biquadM7[6]);
+ long double M7Sample = -tempSample*2.0; //like mono AU, 7 and 8 store L channel
+
+ tempSample = (mid * biquadM10[2]) + biquadM10[7];
+ biquadM10[7] = (-tempSample * biquadM10[5]) + biquadM10[8];
+ biquadM10[8] = (mid * biquadM10[4]) - (tempSample * biquadM10[6]);
+ long double M10Sample = -tempSample*2.0; //like mono AU, 7 and 8 store L channel
+ //mid
+
+ tempSample = (side * biquadS3[2]) + biquadS3[7];
+ biquadS3[7] = (-tempSample * biquadS3[5]) + biquadS3[8];
+ biquadS3[8] = (side * biquadS3[4]) - (tempSample * biquadS3[6]);
+ long double S3Sample = tempSample*2.0; //like mono AU, 7 and 8 store L channel
+
+ tempSample = (side * biquadS5[2]) + biquadS5[7];
+ biquadS5[7] = (-tempSample * biquadS5[5]) + biquadS5[8];
+ biquadS5[8] = (side * biquadS5[4]) - (tempSample * biquadS5[6]);
+ long double S5Sample = -tempSample*5.0; //like mono AU, 7 and 8 store L channel
+
+ mid = (M2Sample + M7Sample + M10Sample)*depthM;
+ side = (S3Sample + S5Sample + boostside)*depthS;
+
+ long double msOutSampleL = (mid+side)/2.0;
+ long double msOutSampleR = (mid-side)/2.0;
+ //unassign mid and side
+
+ long double isoSampleL = inputSampleL-rawmid;
+ long double isoSampleR = inputSampleR-rawmid; //trying to isolate L and R a little
+
+ tempSample = (isoSampleL * biquadL3[2]) + biquadL3[7];
+ biquadL3[7] = (-tempSample * biquadL3[5]) + biquadL3[8];
+ biquadL3[8] = (isoSampleL * biquadL3[4]) - (tempSample * biquadL3[6]);
+ long double L3Sample = tempSample; //like mono AU, 7 and 8 store L channel
+
+ tempSample = (isoSampleR * biquadR3[2]) + biquadR3[9];
+ biquadR3[9] = (-tempSample * biquadR3[5]) + biquadR3[10];
+ biquadR3[10] = (isoSampleR * biquadR3[4]) - (tempSample * biquadR3[6]);
+ long double R3Sample = tempSample; //note: 9 and 10 store the R channel
+
+ tempSample = (isoSampleL * biquadL7[2]) + biquadL7[7];
+ biquadL7[7] = (-tempSample * biquadL7[5]) + biquadL7[8];
+ biquadL7[8] = (isoSampleL * biquadL7[4]) - (tempSample * biquadL7[6]);
+ long double L7Sample = tempSample*3.0; //like mono AU, 7 and 8 store L channel
+
+ tempSample = (isoSampleR * biquadR7[2]) + biquadR7[9];
+ biquadR7[9] = (-tempSample * biquadR7[5]) + biquadR7[10];
+ biquadR7[10] = (isoSampleR * biquadR7[4]) - (tempSample * biquadR7[6]);
+ long double R7Sample = tempSample*3.0; //note: 9 and 10 store the R channel
+
+ long double processingL = msOutSampleL + ((L3Sample + L7Sample)*depthS);
+ long double processingR = msOutSampleR + ((R3Sample + R7Sample)*depthS);
+ //done with making filters, now we apply them
+
+ inputSampleL += processingL;
+ inputSampleR += processingR;
+
+ if (level < 1.0) {
+ inputSampleL *= level;
+ inputSampleR *= level;
+ }
+
+ if (inputSampleL > 1.0) inputSampleL = 1.0;
+ if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0;
+ if (inputSampleR < -1.0) inputSampleR = -1.0;
+ //without this, you can get a NaN condition where it spits out DC offset at full blast!
+ inputSampleL = asin(inputSampleL);
+ inputSampleR = asin(inputSampleR);
+ //amplitude aspect
+
+ if (wet < 1.0) {
+ inputSampleL = (inputSampleL * wet)+(drySampleL * (1.0-wet));
+ inputSampleR = (inputSampleR * wet)+(drySampleR * (1.0-wet));
+ }
+
+ //begin 64 bit stereo floating point dither
+ int expon; frexp((double)inputSampleL, &expon);
+ fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
+ inputSampleL += ((double(fpd)-uint32_t(0x7fffffff)) * 1.1e-44l * pow(2,expon+62));
+ frexp((double)inputSampleR, &expon);
+ fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
+ inputSampleR += ((double(fpd)-uint32_t(0x7fffffff)) * 1.1e-44l * pow(2,expon+62));
+ //end 64 bit stereo floating point dither
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+}