aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/LinuxVST/src/BiquadOneHalf/BiquadOneHalfProc.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/LinuxVST/src/BiquadOneHalf/BiquadOneHalfProc.cpp')
-rwxr-xr-xplugins/LinuxVST/src/BiquadOneHalf/BiquadOneHalfProc.cpp313
1 files changed, 313 insertions, 0 deletions
diff --git a/plugins/LinuxVST/src/BiquadOneHalf/BiquadOneHalfProc.cpp b/plugins/LinuxVST/src/BiquadOneHalf/BiquadOneHalfProc.cpp
new file mode 100755
index 0000000..e126dcf
--- /dev/null
+++ b/plugins/LinuxVST/src/BiquadOneHalf/BiquadOneHalfProc.cpp
@@ -0,0 +1,313 @@
+/* ========================================
+ * BiquadOneHalf - BiquadOneHalf.h
+ * Copyright (c) 2016 airwindows, All rights reserved
+ * ======================================== */
+
+#ifndef __BiquadOneHalf_H
+#include "BiquadOneHalf.h"
+#endif
+
+void BiquadOneHalf::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames)
+{
+ float* in1 = inputs[0];
+ float* in2 = inputs[1];
+ float* out1 = outputs[0];
+ float* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+
+ int type = ceil((A*3.999)+0.00001);
+
+ biquadAL[0] = ((B*B*B*0.9999)+0.0001)*0.499;
+ if (biquadAL[0] < 0.0001) biquadAL[0] = 0.0001;
+
+ biquadAL[1] = (C*C*C*29.99)+0.01;
+ if (biquadAL[1] < 0.0001) biquadAL[1] = 0.0001;
+
+ double wet = (D*2.0)-1.0;
+
+ //biquad contains these values:
+ //[0] is frequency: 0.000001 to 0.499999 is near-zero to near-Nyquist
+ //[1] is resonance, 0.7071 is Butterworth. Also can't be zero
+ //[2] is a0 but you need distinct ones for additional biquad instances so it's here
+ //[3] is a1 but you need distinct ones for additional biquad instances so it's here
+ //[4] is a2 but you need distinct ones for additional biquad instances so it's here
+ //[5] is b1 but you need distinct ones for additional biquad instances so it's here
+ //[6] is b2 but you need distinct ones for additional biquad instances so it's here
+ //[7] is stored delayed sample (freq and res are stored so you can move them sample by sample)
+ //[8] is stored delayed sample (you have to include the coefficient making code if you do that)
+
+ //to build a dedicated filter, rename 'biquad' to whatever the new filter is, then
+ //put this code either within the sample buffer (for smoothly modulating freq or res)
+ //or in this 'read the controls' area (for letting you change freq and res with controls)
+ //or in 'reset' if the freq and res are absolutely fixed (use GetSampleRate to define freq)
+
+ if (type == 1) { //lowpass
+ double K = tan(M_PI * biquadAL[0]);
+ double norm = 1.0 / (1.0 + K / biquadAL[1] + K * K);
+ biquadAL[2] = K * K * norm;
+ biquadAL[3] = 2.0 * biquadAL[2];
+ biquadAL[4] = biquadAL[2];
+ biquadAL[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadAL[6] = (1.0 - K / biquadAL[1] + K * K) * norm;
+ }
+
+ if (type == 2) { //highpass
+ double K = tan(M_PI * biquadAL[0]);
+ double norm = 1.0 / (1.0 + K / biquadAL[1] + K * K);
+ biquadAL[2] = norm;
+ biquadAL[3] = -2.0 * biquadAL[2];
+ biquadAL[4] = biquadAL[2];
+ biquadAL[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadAL[6] = (1.0 - K / biquadAL[1] + K * K) * norm;
+ }
+
+ if (type == 3) { //bandpass
+ double K = tan(M_PI * biquadAL[0]);
+ double norm = 1.0 / (1.0 + K / biquadAL[1] + K * K);
+ biquadAL[2] = K / biquadAL[1] * norm;
+ biquadAL[3] = 0.0; //bandpass can simplify the biquad kernel: leave out this multiply
+ biquadAL[4] = -biquadAL[2];
+ biquadAL[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadAL[6] = (1.0 - K / biquadAL[1] + K * K) * norm;
+ }
+
+ if (type == 4) { //notch
+ double K = tan(M_PI * biquadAL[0]);
+ double norm = 1.0 / (1.0 + K / biquadAL[1] + K * K);
+ biquadAL[2] = (1.0 + K * K) * norm;
+ biquadAL[3] = 2.0 * (K * K - 1) * norm;
+ biquadAL[4] = biquadAL[2];
+ biquadAL[5] = biquadAL[3];
+ biquadAL[6] = (1.0 - K / biquadAL[1] + K * K) * norm;
+ }
+ for (int x = 0; x < 7; x++) {biquadAR[x] = biquadBL[x] = biquadBR[x] = biquadAL[x];}
+
+ while (--sampleFrames >= 0)
+ {
+ long double inputSampleL = *in1;
+ long double inputSampleR = *in2;
+ if (fabs(inputSampleL)<1.18e-37) inputSampleL = fpd * 1.18e-37;
+ if (fabs(inputSampleR)<1.18e-37) inputSampleR = fpd * 1.18e-37;
+ long double drySampleL = inputSampleL;
+ long double drySampleR = inputSampleR;
+
+ inputSampleL = sin(inputSampleL);
+ inputSampleR = sin(inputSampleR);
+ //encode Console5: good cleanness
+
+ long double tempSampleL;
+ long double tempSampleR;
+
+ if (flip)
+ {
+ tempSampleL = (inputSampleL * biquadAL[2]) + biquadAL[7];
+ biquadAL[7] = (inputSampleL * biquadAL[3]) - (tempSampleL * biquadAL[5]) + biquadAL[8];
+ biquadAL[8] = (inputSampleL * biquadAL[4]) - (tempSampleL * biquadAL[6]);
+ inputSampleL = tempSampleL;
+ tempSampleR = (inputSampleR * biquadAR[2]) + biquadAR[7];
+ biquadAR[7] = (inputSampleR * biquadAR[3]) - (tempSampleR * biquadAR[5]) + biquadAR[8];
+ biquadAR[8] = (inputSampleR * biquadAR[4]) - (tempSampleR * biquadAR[6]);
+ inputSampleR = tempSampleR;
+ }
+ else
+ {
+ tempSampleL = (inputSampleL * biquadBL[2]) + biquadBL[7];
+ biquadBL[7] = (inputSampleL * biquadBL[3]) - (tempSampleL * biquadBL[5]) + biquadBL[8];
+ biquadBL[8] = (inputSampleL * biquadBL[4]) - (tempSampleL * biquadBL[6]);
+ inputSampleL = tempSampleL;
+ tempSampleR = (inputSampleR * biquadBR[2]) + biquadBR[7];
+ biquadBR[7] = (inputSampleR * biquadBR[3]) - (tempSampleR * biquadBR[5]) + biquadBR[8];
+ biquadBR[8] = (inputSampleR * biquadBR[4]) - (tempSampleR * biquadBR[6]);
+ inputSampleR = tempSampleR;
+ }
+ flip = !flip;
+
+ if (inputSampleL > 1.0) inputSampleL = 1.0;
+ if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0;
+ if (inputSampleR < -1.0) inputSampleR = -1.0;
+ //without this, you can get a NaN condition where it spits out DC offset at full blast!
+ inputSampleL = asin(inputSampleL);
+ inputSampleR = asin(inputSampleR);
+ //amplitude aspect
+
+ if (wet < 1.0) {
+ inputSampleL = (inputSampleL*wet) + (drySampleL*(1.0-fabs(wet)));
+ inputSampleR = (inputSampleR*wet) + (drySampleR*(1.0-fabs(wet)));
+ //inv/dry/wet lets us turn LP into HP and band into notch
+ }
+
+ //begin 32 bit stereo floating point dither
+ int expon; frexpf((float)inputSampleL, &expon);
+ fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
+ inputSampleL += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62));
+ frexpf((float)inputSampleR, &expon);
+ fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
+ inputSampleR += ((double(fpd)-uint32_t(0x7fffffff)) * 5.5e-36l * pow(2,expon+62));
+ //end 32 bit stereo floating point dither
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+}
+
+void BiquadOneHalf::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames)
+{
+ double* in1 = inputs[0];
+ double* in2 = inputs[1];
+ double* out1 = outputs[0];
+ double* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+
+ int type = ceil((A*3.999)+0.00001);
+
+ biquadAL[0] = ((B*B*B*0.9999)+0.0001)*0.499;
+ if (biquadAL[0] < 0.0001) biquadAL[0] = 0.0001;
+
+ biquadAL[1] = (C*C*C*29.99)+0.01;
+ if (biquadAL[1] < 0.0001) biquadAL[1] = 0.0001;
+
+ double wet = (D*2.0)-1.0;
+
+ //biquad contains these values:
+ //[0] is frequency: 0.000001 to 0.499999 is near-zero to near-Nyquist
+ //[1] is resonance, 0.7071 is Butterworth. Also can't be zero
+ //[2] is a0 but you need distinct ones for additional biquad instances so it's here
+ //[3] is a1 but you need distinct ones for additional biquad instances so it's here
+ //[4] is a2 but you need distinct ones for additional biquad instances so it's here
+ //[5] is b1 but you need distinct ones for additional biquad instances so it's here
+ //[6] is b2 but you need distinct ones for additional biquad instances so it's here
+ //[7] is stored delayed sample (freq and res are stored so you can move them sample by sample)
+ //[8] is stored delayed sample (you have to include the coefficient making code if you do that)
+
+ //to build a dedicated filter, rename 'biquad' to whatever the new filter is, then
+ //put this code either within the sample buffer (for smoothly modulating freq or res)
+ //or in this 'read the controls' area (for letting you change freq and res with controls)
+ //or in 'reset' if the freq and res are absolutely fixed (use GetSampleRate to define freq)
+
+ if (type == 1) { //lowpass
+ double K = tan(M_PI * biquadAL[0]);
+ double norm = 1.0 / (1.0 + K / biquadAL[1] + K * K);
+ biquadAL[2] = K * K * norm;
+ biquadAL[3] = 2.0 * biquadAL[2];
+ biquadAL[4] = biquadAL[2];
+ biquadAL[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadAL[6] = (1.0 - K / biquadAL[1] + K * K) * norm;
+ }
+
+ if (type == 2) { //highpass
+ double K = tan(M_PI * biquadAL[0]);
+ double norm = 1.0 / (1.0 + K / biquadAL[1] + K * K);
+ biquadAL[2] = norm;
+ biquadAL[3] = -2.0 * biquadAL[2];
+ biquadAL[4] = biquadAL[2];
+ biquadAL[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadAL[6] = (1.0 - K / biquadAL[1] + K * K) * norm;
+ }
+
+ if (type == 3) { //bandpass
+ double K = tan(M_PI * biquadAL[0]);
+ double norm = 1.0 / (1.0 + K / biquadAL[1] + K * K);
+ biquadAL[2] = K / biquadAL[1] * norm;
+ biquadAL[3] = 0.0; //bandpass can simplify the biquad kernel: leave out this multiply
+ biquadAL[4] = -biquadAL[2];
+ biquadAL[5] = 2.0 * (K * K - 1.0) * norm;
+ biquadAL[6] = (1.0 - K / biquadAL[1] + K * K) * norm;
+ }
+
+ if (type == 4) { //notch
+ double K = tan(M_PI * biquadAL[0]);
+ double norm = 1.0 / (1.0 + K / biquadAL[1] + K * K);
+ biquadAL[2] = (1.0 + K * K) * norm;
+ biquadAL[3] = 2.0 * (K * K - 1) * norm;
+ biquadAL[4] = biquadAL[2];
+ biquadAL[5] = biquadAL[3];
+ biquadAL[6] = (1.0 - K / biquadAL[1] + K * K) * norm;
+ }
+ for (int x = 0; x < 7; x++) {biquadAR[x] = biquadBL[x] = biquadBR[x] = biquadAL[x];}
+
+ while (--sampleFrames >= 0)
+ {
+ long double inputSampleL = *in1;
+ long double inputSampleR = *in2;
+ if (fabs(inputSampleL)<1.18e-43) inputSampleL = fpd * 1.18e-43;
+ if (fabs(inputSampleR)<1.18e-43) inputSampleR = fpd * 1.18e-43;
+ long double drySampleL = inputSampleL;
+ long double drySampleR = inputSampleR;
+
+
+ inputSampleL = sin(inputSampleL);
+ inputSampleR = sin(inputSampleR);
+ //encode Console5: good cleanness
+
+ long double tempSampleL;
+ long double tempSampleR;
+
+ if (flip)
+ {
+ tempSampleL = (inputSampleL * biquadAL[2]) + biquadAL[7];
+ biquadAL[7] = (inputSampleL * biquadAL[3]) - (tempSampleL * biquadAL[5]) + biquadAL[8];
+ biquadAL[8] = (inputSampleL * biquadAL[4]) - (tempSampleL * biquadAL[6]);
+ inputSampleL = tempSampleL;
+ tempSampleR = (inputSampleR * biquadAR[2]) + biquadAR[7];
+ biquadAR[7] = (inputSampleR * biquadAR[3]) - (tempSampleR * biquadAR[5]) + biquadAR[8];
+ biquadAR[8] = (inputSampleR * biquadAR[4]) - (tempSampleR * biquadAR[6]);
+ inputSampleR = tempSampleR;
+ }
+ else
+ {
+ tempSampleL = (inputSampleL * biquadBL[2]) + biquadBL[7];
+ biquadBL[7] = (inputSampleL * biquadBL[3]) - (tempSampleL * biquadBL[5]) + biquadBL[8];
+ biquadBL[8] = (inputSampleL * biquadBL[4]) - (tempSampleL * biquadBL[6]);
+ inputSampleL = tempSampleL;
+ tempSampleR = (inputSampleR * biquadBR[2]) + biquadBR[7];
+ biquadBR[7] = (inputSampleR * biquadBR[3]) - (tempSampleR * biquadBR[5]) + biquadBR[8];
+ biquadBR[8] = (inputSampleR * biquadBR[4]) - (tempSampleR * biquadBR[6]);
+ inputSampleR = tempSampleR;
+ }
+ flip = !flip;
+
+ if (inputSampleL > 1.0) inputSampleL = 1.0;
+ if (inputSampleL < -1.0) inputSampleL = -1.0;
+ if (inputSampleR > 1.0) inputSampleR = 1.0;
+ if (inputSampleR < -1.0) inputSampleR = -1.0;
+ //without this, you can get a NaN condition where it spits out DC offset at full blast!
+ inputSampleL = asin(inputSampleL);
+ inputSampleR = asin(inputSampleR);
+ //amplitude aspect
+
+ if (wet < 1.0) {
+ inputSampleL = (inputSampleL*wet) + (drySampleL*(1.0-fabs(wet)));
+ inputSampleR = (inputSampleR*wet) + (drySampleR*(1.0-fabs(wet)));
+ //inv/dry/wet lets us turn LP into HP and band into notch
+ }
+
+ //begin 64 bit stereo floating point dither
+ int expon; frexp((double)inputSampleL, &expon);
+ fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
+ inputSampleL += ((double(fpd)-uint32_t(0x7fffffff)) * 1.1e-44l * pow(2,expon+62));
+ frexp((double)inputSampleR, &expon);
+ fpd ^= fpd << 13; fpd ^= fpd >> 17; fpd ^= fpd << 5;
+ inputSampleR += ((double(fpd)-uint32_t(0x7fffffff)) * 1.1e-44l * pow(2,expon+62));
+ //end 64 bit stereo floating point dither
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+}