aboutsummaryrefslogtreecommitdiffstats
path: root/plugins/WinVST/Density/DensityProc.cpp
diff options
context:
space:
mode:
authorChris Johnson <jinx6568@sover.net>2018-10-22 18:04:06 -0400
committerChris Johnson <jinx6568@sover.net>2018-10-22 18:04:06 -0400
commit633be2e22c6648c901f08f3b4cd4e8e14ea86443 (patch)
tree1e272c3d2b5bd29636b9f9f521af62734e4df012 /plugins/WinVST/Density/DensityProc.cpp
parent057757aa8eb0a463caf0cdfdb5894ac5f723ff3f (diff)
downloadairwindows-lv2-port-633be2e22c6648c901f08f3b4cd4e8e14ea86443.tar.gz
airwindows-lv2-port-633be2e22c6648c901f08f3b4cd4e8e14ea86443.tar.bz2
airwindows-lv2-port-633be2e22c6648c901f08f3b4cd4e8e14ea86443.zip
Updates (in case my plane crashes)
Diffstat (limited to 'plugins/WinVST/Density/DensityProc.cpp')
-rwxr-xr-xplugins/WinVST/Density/DensityProc.cpp354
1 files changed, 354 insertions, 0 deletions
diff --git a/plugins/WinVST/Density/DensityProc.cpp b/plugins/WinVST/Density/DensityProc.cpp
new file mode 100755
index 0000000..1e968c7
--- /dev/null
+++ b/plugins/WinVST/Density/DensityProc.cpp
@@ -0,0 +1,354 @@
+/* ========================================
+ * Density - Density.h
+ * Copyright (c) 2016 airwindows, All rights reserved
+ * ======================================== */
+
+#ifndef __Density_H
+#include "Density.h"
+#endif
+
+void Density::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames)
+{
+ float* in1 = inputs[0];
+ float* in2 = inputs[1];
+ float* out1 = outputs[0];
+ float* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+ double density = (A*5.0)-1.0;
+ double iirAmount = pow(B,3)/overallscale;
+ double output = C;
+ double wet = D;
+ double dry = 1.0-wet;
+ double bridgerectifier;
+ double out = fabs(density);
+ density = density * fabs(density);
+ double count;
+ float fpTemp;
+ long double fpOld = 0.618033988749894848204586; //golden ratio!
+ long double fpNew = 1.0 - fpOld;
+
+ long double inputSampleL;
+ long double inputSampleR;
+ long double drySampleL;
+ long double drySampleR;
+
+ while (--sampleFrames >= 0)
+ {
+ inputSampleL = *in1;
+ inputSampleR = *in2;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ static int noisesource = 0;
+ //this declares a variable before anything else is compiled. It won't keep assigning
+ //it to 0 for every sample, it's as if the declaration doesn't exist in this context,
+ //but it lets me add this denormalization fix in a single place rather than updating
+ //it in three different locations. The variable isn't thread-safe but this is only
+ //a random seed and we can share it with whatever.
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL = applyresidue;
+ }
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ static int noisesource = 0;
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR = applyresidue;
+ //this denormalization routine produces a white noise at -300 dB which the noise
+ //shaping will interact with to produce a bipolar output, but the noise is actually
+ //all positive. That should stop any variables from going denormal, and the routine
+ //only kicks in if digital black is input. As a final touch, if you save to 24-bit
+ //the silence will return to being digital black again.
+ }
+ drySampleL = inputSampleL;
+ drySampleR = inputSampleR;
+
+ if (fpFlip)
+ {
+ iirSampleAL = (iirSampleAL * (1.0 - iirAmount)) + (inputSampleL * iirAmount);
+ inputSampleL -= iirSampleAL;
+ iirSampleAR = (iirSampleAR * (1.0 - iirAmount)) + (inputSampleR * iirAmount);
+ inputSampleR -= iirSampleAR;
+ }
+ else
+ {
+ iirSampleBL = (iirSampleBL * (1.0 - iirAmount)) + (inputSampleL * iirAmount);
+ inputSampleL -= iirSampleBL;
+ iirSampleBR = (iirSampleBR * (1.0 - iirAmount)) + (inputSampleR * iirAmount);
+ inputSampleR -= iirSampleBR;
+ }
+ //highpass section
+
+ count = density;
+ while (count > 1.0)
+ {
+ bridgerectifier = fabs(inputSampleL)*1.57079633;
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (inputSampleL > 0.0) inputSampleL = bridgerectifier;
+ else inputSampleL = -bridgerectifier;
+
+ bridgerectifier = fabs(inputSampleR)*1.57079633;
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (inputSampleR > 0.0) inputSampleR = bridgerectifier;
+ else inputSampleR = -bridgerectifier;
+
+ count = count - 1.0;
+ }
+ //we have now accounted for any really high density settings.
+
+ while (out > 1.0) out = out - 1.0;
+
+ bridgerectifier = fabs(inputSampleL)*1.57079633;
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ if (density > 0) bridgerectifier = sin(bridgerectifier);
+ else bridgerectifier = 1-cos(bridgerectifier);
+ //produce either boosted or starved version
+ if (inputSampleL > 0) inputSampleL = (inputSampleL*(1-out))+(bridgerectifier*out);
+ else inputSampleL = (inputSampleL*(1-out))-(bridgerectifier*out);
+ //blend according to density control
+
+ bridgerectifier = fabs(inputSampleR)*1.57079633;
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ if (density > 0) bridgerectifier = sin(bridgerectifier);
+ else bridgerectifier = 1-cos(bridgerectifier);
+ //produce either boosted or starved version
+ if (inputSampleR > 0) inputSampleR = (inputSampleR*(1.0-out))+(bridgerectifier*out);
+ else inputSampleR = (inputSampleR*(1.0-out))-(bridgerectifier*out);
+ //blend according to density control
+
+ if (output < 1.0) {
+ inputSampleL *= output;
+ inputSampleR *= output;
+ }
+ if (wet < 1.0) {
+ inputSampleL = (drySampleL * dry)+(inputSampleL * wet);
+ inputSampleR = (drySampleR * dry)+(inputSampleR * wet);
+ }
+ //nice little output stage template: if we have another scale of floating point
+ //number, we really don't want to meaninglessly multiply that by 1.0.
+
+ //noise shaping to 32-bit floating point
+ if (fpFlip) {
+ fpTemp = inputSampleL;
+ fpNShapeLA = (fpNShapeLA*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLA;
+ fpTemp = inputSampleR;
+ fpNShapeRA = (fpNShapeRA*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRA;
+ }
+ else {
+ fpTemp = inputSampleL;
+ fpNShapeLB = (fpNShapeLB*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLB;
+ fpTemp = inputSampleR;
+ fpNShapeRB = (fpNShapeRB*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRB;
+ }
+ fpFlip = !fpFlip;
+ //end noise shaping on 32 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+}
+
+void Density::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames)
+{
+ double* in1 = inputs[0];
+ double* in2 = inputs[1];
+ double* out1 = outputs[0];
+ double* out2 = outputs[1];
+
+ double overallscale = 1.0;
+ overallscale /= 44100.0;
+ overallscale *= getSampleRate();
+ double density = (A*5.0)-1.0;
+ double iirAmount = pow(B,3)/overallscale;
+ double output = C;
+ double wet = D;
+ double dry = 1.0-wet;
+ double bridgerectifier;
+ double out = fabs(density);
+ density = density * fabs(density);
+ double count;
+ double fpTemp;
+ long double fpOld = 0.618033988749894848204586; //golden ratio!
+ long double fpNew = 1.0 - fpOld;
+
+ long double inputSampleL;
+ long double inputSampleR;
+ long double drySampleL;
+ long double drySampleR;
+
+ while (--sampleFrames >= 0)
+ {
+ inputSampleL = *in1;
+ inputSampleR = *in2;
+ if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
+ static int noisesource = 0;
+ //this declares a variable before anything else is compiled. It won't keep assigning
+ //it to 0 for every sample, it's as if the declaration doesn't exist in this context,
+ //but it lets me add this denormalization fix in a single place rather than updating
+ //it in three different locations. The variable isn't thread-safe but this is only
+ //a random seed and we can share it with whatever.
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleL = applyresidue;
+ }
+ if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
+ static int noisesource = 0;
+ noisesource = noisesource % 1700021; noisesource++;
+ int residue = noisesource * noisesource;
+ residue = residue % 170003; residue *= residue;
+ residue = residue % 17011; residue *= residue;
+ residue = residue % 1709; residue *= residue;
+ residue = residue % 173; residue *= residue;
+ residue = residue % 17;
+ double applyresidue = residue;
+ applyresidue *= 0.00000001;
+ applyresidue *= 0.00000001;
+ inputSampleR = applyresidue;
+ //this denormalization routine produces a white noise at -300 dB which the noise
+ //shaping will interact with to produce a bipolar output, but the noise is actually
+ //all positive. That should stop any variables from going denormal, and the routine
+ //only kicks in if digital black is input. As a final touch, if you save to 24-bit
+ //the silence will return to being digital black again.
+ }
+ drySampleL = inputSampleL;
+ drySampleR = inputSampleR;
+
+ if (fpFlip)
+ {
+ iirSampleAL = (iirSampleAL * (1.0 - iirAmount)) + (inputSampleL * iirAmount);
+ inputSampleL -= iirSampleAL;
+ iirSampleAR = (iirSampleAR * (1.0 - iirAmount)) + (inputSampleR * iirAmount);
+ inputSampleR -= iirSampleAR;
+ }
+ else
+ {
+ iirSampleBL = (iirSampleBL * (1.0 - iirAmount)) + (inputSampleL * iirAmount);
+ inputSampleL -= iirSampleBL;
+ iirSampleBR = (iirSampleBR * (1.0 - iirAmount)) + (inputSampleR * iirAmount);
+ inputSampleR -= iirSampleBR;
+ }
+ //highpass section
+
+ count = density;
+ while (count > 1.0)
+ {
+ bridgerectifier = fabs(inputSampleL)*1.57079633;
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (inputSampleL > 0.0) inputSampleL = bridgerectifier;
+ else inputSampleL = -bridgerectifier;
+
+ bridgerectifier = fabs(inputSampleR)*1.57079633;
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ bridgerectifier = sin(bridgerectifier);
+ if (inputSampleR > 0.0) inputSampleR = bridgerectifier;
+ else inputSampleR = -bridgerectifier;
+
+ count = count - 1.0;
+ }
+ //we have now accounted for any really high density settings.
+
+ while (out > 1.0) out = out - 1.0;
+
+ bridgerectifier = fabs(inputSampleL)*1.57079633;
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ if (density > 0) bridgerectifier = sin(bridgerectifier);
+ else bridgerectifier = 1-cos(bridgerectifier);
+ //produce either boosted or starved version
+ if (inputSampleL > 0) inputSampleL = (inputSampleL*(1-out))+(bridgerectifier*out);
+ else inputSampleL = (inputSampleL*(1-out))-(bridgerectifier*out);
+ //blend according to density control
+
+ bridgerectifier = fabs(inputSampleR)*1.57079633;
+ if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
+ //max value for sine function
+ if (density > 0) bridgerectifier = sin(bridgerectifier);
+ else bridgerectifier = 1-cos(bridgerectifier);
+ //produce either boosted or starved version
+ if (inputSampleR > 0) inputSampleR = (inputSampleR*(1.0-out))+(bridgerectifier*out);
+ else inputSampleR = (inputSampleR*(1.0-out))-(bridgerectifier*out);
+ //blend according to density control
+
+ if (output < 1.0) {
+ inputSampleL *= output;
+ inputSampleR *= output;
+ }
+ if (wet < 1.0) {
+ inputSampleL = (drySampleL * dry)+(inputSampleL * wet);
+ inputSampleR = (drySampleR * dry)+(inputSampleR * wet);
+ }
+ //nice little output stage template: if we have another scale of floating point
+ //number, we really don't want to meaninglessly multiply that by 1.0.
+
+ //noise shaping to 64-bit floating point
+ if (fpFlip) {
+ fpTemp = inputSampleL;
+ fpNShapeLA = (fpNShapeLA*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLA;
+ fpTemp = inputSampleR;
+ fpNShapeRA = (fpNShapeRA*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRA;
+ }
+ else {
+ fpTemp = inputSampleL;
+ fpNShapeLB = (fpNShapeLB*fpOld)+((inputSampleL-fpTemp)*fpNew);
+ inputSampleL += fpNShapeLB;
+ fpTemp = inputSampleR;
+ fpNShapeRB = (fpNShapeRB*fpOld)+((inputSampleR-fpTemp)*fpNew);
+ inputSampleR += fpNShapeRB;
+ }
+ fpFlip = !fpFlip;
+ //end noise shaping on 64 bit output
+
+ *out1 = inputSampleL;
+ *out2 = inputSampleR;
+
+ *in1++;
+ *in2++;
+ *out1++;
+ *out2++;
+ }
+} \ No newline at end of file