aboutsummaryrefslogblamecommitdiffstats
path: root/plugins/WinVST/Pressure4/Pressure4Proc.cpp
blob: 7e285df60999d605cc38aca5e6cacb6cc3395da2 (plain) (tree)












































                                                                                         




















































































































































                                                                                                                  







                                                                                               














































                                                                                                 





















































































































































                                                                                                                  









                                                                                               









                                        
/* ========================================
 *  Pressure4 - Pressure4.h
 *  Copyright (c) 2016 airwindows, All rights reserved
 * ======================================== */

#ifndef __Pressure4_H
#include "Pressure4.h"
#endif

void Pressure4::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) 
{
    float* inputL  =  inputs[0];
    float* inputR  =  inputs[1];
    float* outputL = outputs[0];
    float* outputR = outputs[1];

	double overallscale = 1.0;
	overallscale /= 44100.0;
	overallscale *= getSampleRate();
	double threshold = 1.0 - (A * 0.95);
	double muMakeupGain = 1.0 / threshold;
	//gain settings around threshold
	double release = pow((1.28-B),5)*32768.0;
	release /= overallscale;
	double fastest = sqrt(release);
	//speed settings around release
	long double bridgerectifier;
	double coefficient;
	double inputSense;
	double mewiness = (C*2.0)-1.0;
	double unmewiness;
	double outputGain = D;
	bool positivemu;
	if (mewiness >= 0)
	{
		positivemu = true;
		unmewiness = 1.0-mewiness;
	}
	else
	{
		positivemu = false;
		mewiness = -mewiness;
		unmewiness = 1.0-mewiness;
	}
	// µ µ µ µ µ µ µ µ µ µ µ µ is the kitten song o/~

	long double inputSampleL;
	long double inputSampleR;
	    
    while (--sampleFrames >= 0)
    {
		inputSampleL = *inputL;
		inputSampleR = *inputR;
		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
			static int noisesource = 0;
			//this declares a variable before anything else is compiled. It won't keep assigning
			//it to 0 for every sample, it's as if the declaration doesn't exist in this context,
			//but it lets me add this denormalization fix in a single place rather than updating
			//it in three different locations. The variable isn't thread-safe but this is only
			//a random seed and we can share it with whatever.
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleL = applyresidue;
		}
		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
			static int noisesource = 0;
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleR = applyresidue;
			//this denormalization routine produces a white noise at -300 dB which the noise
			//shaping will interact with to produce a bipolar output, but the noise is actually
			//all positive. That should stop any variables from going denormal, and the routine
			//only kicks in if digital black is input. As a final touch, if you save to 24-bit
			//the silence will return to being digital black again.
		}
		
		inputSampleL = inputSampleL * muMakeupGain;
		inputSampleR = inputSampleR * muMakeupGain;
		
		inputSense = fabs(inputSampleL);
		if (fabs(inputSampleR) > inputSense)
			inputSense = fabs(inputSampleR);
		//we will take the greater of either channel and just use that, then apply the result
		//to both stereo channels.
		
		if (flip)
		{
			if (inputSense > threshold)
			{
				muVary = threshold / inputSense;
				muAttack = sqrt(fabs(muSpeedA));
				muCoefficientA = muCoefficientA * (muAttack-1.0);
				if (muVary < threshold)
				{
					muCoefficientA = muCoefficientA + threshold;
				}
				else
				{
					muCoefficientA = muCoefficientA + muVary;
				}
				muCoefficientA = muCoefficientA / muAttack;
			}
			else
			{
				muCoefficientA = muCoefficientA * ((muSpeedA * muSpeedA)-1.0);
				muCoefficientA = muCoefficientA + 1.0;
				muCoefficientA = muCoefficientA / (muSpeedA * muSpeedA);
			}
			muNewSpeed = muSpeedA * (muSpeedA-1);
			muNewSpeed = muNewSpeed + fabs(inputSense*release)+fastest;
			muSpeedA = muNewSpeed / muSpeedA;
		}
		else
		{
			if (inputSense > threshold)
			{
				muVary = threshold / inputSense;
				muAttack = sqrt(fabs(muSpeedB));
				muCoefficientB = muCoefficientB * (muAttack-1);
				if (muVary < threshold)
				{
					muCoefficientB = muCoefficientB + threshold;
				}
				else
				{
					muCoefficientB = muCoefficientB + muVary;
				}
				muCoefficientB = muCoefficientB / muAttack;
			}
			else
			{
				muCoefficientB = muCoefficientB * ((muSpeedB * muSpeedB)-1.0);
				muCoefficientB = muCoefficientB + 1.0;
				muCoefficientB = muCoefficientB / (muSpeedB * muSpeedB);
			}
			muNewSpeed = muSpeedB * (muSpeedB-1);
			muNewSpeed = muNewSpeed + fabs(inputSense*release)+fastest;
			muSpeedB = muNewSpeed / muSpeedB;
		}
		//got coefficients, adjusted speeds
		
		if (flip)
		{
			if (positivemu) coefficient = pow(muCoefficientA,2);
			else coefficient = sqrt(muCoefficientA);
			coefficient = (coefficient*mewiness)+(muCoefficientA*unmewiness);
			inputSampleL *= coefficient;
			inputSampleR *= coefficient;
		}
		else
		{
			if (positivemu) coefficient = pow(muCoefficientB,2);
			else coefficient = sqrt(muCoefficientB);
			coefficient = (coefficient*mewiness)+(muCoefficientB*unmewiness);
			inputSampleL *= coefficient;
			inputSampleR *= coefficient;
		}
		//applied compression with vari-vari-µ-µ-µ-µ-µ-µ-is-the-kitten-song o/~
		//applied gain correction to control output level- tends to constrain sound rather than inflate it
		
		if (outputGain != 1.0) {
			inputSampleL *= outputGain;
			inputSampleR *= outputGain;
		}		

		bridgerectifier = fabs(inputSampleL);
		if (bridgerectifier > 1.57079633) bridgerectifier = 1.0;
		else bridgerectifier = sin(bridgerectifier);
		if (inputSampleL > 0){inputSampleL = bridgerectifier;}
		else {inputSampleL = -bridgerectifier;}
		//second stage of overdrive to prevent overs and allow bloody loud extremeness
		bridgerectifier = fabs(inputSampleR);
		if (bridgerectifier > 1.57079633) bridgerectifier = 1.0;
		else bridgerectifier = sin(bridgerectifier);
		if (inputSampleR > 0){inputSampleR = bridgerectifier;}
		else {inputSampleR = -bridgerectifier;}
		//second stage of overdrive to prevent overs and allow bloody loud extremeness
		
		//stereo 32 bit dither, made small and tidy.
		int expon; frexpf((float)inputSampleL, &expon);
		long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		inputSampleL += (dither-fpNShapeL); fpNShapeL = dither;
		frexpf((float)inputSampleR, &expon);
		dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		inputSampleR += (dither-fpNShapeR); fpNShapeR = dither;
		//end 32 bit dither
		
		*outputL = inputSampleL;
		*outputR = inputSampleR;
		
		*inputL++;
		*inputR++;
		*outputL++;
		*outputR++;
    }
}

void Pressure4::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) 
{
    double* inputL  =  inputs[0];
    double* inputR  =  inputs[1];
    double* outputL = outputs[0];
    double* outputR = outputs[1];

	double overallscale = 1.0;
	overallscale /= 44100.0;
	overallscale *= getSampleRate();
	double threshold = 1.0 - (A * 0.95);
	double muMakeupGain = 1.0 / threshold;
	//gain settings around threshold
	double release = pow((1.28-B),5)*32768.0;
	release /= overallscale;
	double fastest = sqrt(release);
	//speed settings around release
	long double bridgerectifier;
	double coefficient;
	double inputSense;
	double mewiness = (C*2.0)-1.0;
	double unmewiness;
	double outputGain = D;
	bool positivemu;
	if (mewiness >= 0)
	{
		positivemu = true;
		unmewiness = 1.0-mewiness;
	}
	else
	{
		positivemu = false;
		mewiness = -mewiness;
		unmewiness = 1.0-mewiness;
	}
	// µ µ µ µ µ µ µ µ µ µ µ µ is the kitten song o/~

	long double inputSampleL;
	long double inputSampleR;
 

    while (--sampleFrames >= 0)
    {
		inputSampleL = *inputL;
		inputSampleR = *inputR;
		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
			static int noisesource = 0;
			//this declares a variable before anything else is compiled. It won't keep assigning
			//it to 0 for every sample, it's as if the declaration doesn't exist in this context,
			//but it lets me add this denormalization fix in a single place rather than updating
			//it in three different locations. The variable isn't thread-safe but this is only
			//a random seed and we can share it with whatever.
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleL = applyresidue;
		}
		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
			static int noisesource = 0;
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleR = applyresidue;
			//this denormalization routine produces a white noise at -300 dB which the noise
			//shaping will interact with to produce a bipolar output, but the noise is actually
			//all positive. That should stop any variables from going denormal, and the routine
			//only kicks in if digital black is input. As a final touch, if you save to 24-bit
			//the silence will return to being digital black again.
		}
		
		inputSampleL = inputSampleL * muMakeupGain;
		inputSampleR = inputSampleR * muMakeupGain;
		
		inputSense = fabs(inputSampleL);
		if (fabs(inputSampleR) > inputSense)
			inputSense = fabs(inputSampleR);
		//we will take the greater of either channel and just use that, then apply the result
		//to both stereo channels.
		
		if (flip)
		{
			if (inputSense > threshold)
			{
				muVary = threshold / inputSense;
				muAttack = sqrt(fabs(muSpeedA));
				muCoefficientA = muCoefficientA * (muAttack-1.0);
				if (muVary < threshold)
				{
					muCoefficientA = muCoefficientA + threshold;
				}
				else
				{
					muCoefficientA = muCoefficientA + muVary;
				}
				muCoefficientA = muCoefficientA / muAttack;
			}
			else
			{
				muCoefficientA = muCoefficientA * ((muSpeedA * muSpeedA)-1.0);
				muCoefficientA = muCoefficientA + 1.0;
				muCoefficientA = muCoefficientA / (muSpeedA * muSpeedA);
			}
			muNewSpeed = muSpeedA * (muSpeedA-1);
			muNewSpeed = muNewSpeed + fabs(inputSense*release)+fastest;
			muSpeedA = muNewSpeed / muSpeedA;
		}
		else
		{
			if (inputSense > threshold)
			{
				muVary = threshold / inputSense;
				muAttack = sqrt(fabs(muSpeedB));
				muCoefficientB = muCoefficientB * (muAttack-1);
				if (muVary < threshold)
				{
					muCoefficientB = muCoefficientB + threshold;
				}
				else
				{
					muCoefficientB = muCoefficientB + muVary;
				}
				muCoefficientB = muCoefficientB / muAttack;
			}
			else
			{
				muCoefficientB = muCoefficientB * ((muSpeedB * muSpeedB)-1.0);
				muCoefficientB = muCoefficientB + 1.0;
				muCoefficientB = muCoefficientB / (muSpeedB * muSpeedB);
			}
			muNewSpeed = muSpeedB * (muSpeedB-1);
			muNewSpeed = muNewSpeed + fabs(inputSense*release)+fastest;
			muSpeedB = muNewSpeed / muSpeedB;
		}
		//got coefficients, adjusted speeds
		
		if (flip)
		{
			if (positivemu) coefficient = pow(muCoefficientA,2);
			else coefficient = sqrt(muCoefficientA);
			coefficient = (coefficient*mewiness)+(muCoefficientA*unmewiness);
			inputSampleL *= coefficient;
			inputSampleR *= coefficient;
		}
		else
		{
			if (positivemu) coefficient = pow(muCoefficientB,2);
			else coefficient = sqrt(muCoefficientB);
			coefficient = (coefficient*mewiness)+(muCoefficientB*unmewiness);
			inputSampleL *= coefficient;
			inputSampleR *= coefficient;
		}
		//applied compression with vari-vari-µ-µ-µ-µ-µ-µ-is-the-kitten-song o/~
		//applied gain correction to control output level- tends to constrain sound rather than inflate it
		
		if (outputGain != 1.0) {
			inputSampleL *= outputGain;
			inputSampleR *= outputGain;
		}		

		bridgerectifier = fabs(inputSampleL);
		if (bridgerectifier > 1.57079633) bridgerectifier = 1.0;
		else bridgerectifier = sin(bridgerectifier);
		if (inputSampleL > 0){inputSampleL = bridgerectifier;}
		else {inputSampleL = -bridgerectifier;}
		//second stage of overdrive to prevent overs and allow bloody loud extremeness
		bridgerectifier = fabs(inputSampleR);
		if (bridgerectifier > 1.57079633) bridgerectifier = 1.0;
		else bridgerectifier = sin(bridgerectifier);
		if (inputSampleR > 0){inputSampleR = bridgerectifier;}
		else {inputSampleR = -bridgerectifier;}
		//second stage of overdrive to prevent overs and allow bloody loud extremeness
		
		//stereo 64 bit dither, made small and tidy.
		int expon; frexp((double)inputSampleL, &expon);
		long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		dither /= 536870912.0; //needs this to scale to 64 bit zone
		inputSampleL += (dither-fpNShapeL); fpNShapeL = dither;
		frexp((double)inputSampleR, &expon);
		dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		dither /= 536870912.0; //needs this to scale to 64 bit zone
		inputSampleR += (dither-fpNShapeR); fpNShapeR = dither;
		//end 64 bit dither
		
		*outputL = inputSampleL;
		*outputR = inputSampleR;

		*inputL++;
		*inputR++;
		*outputL++;
		*outputR++;
    }
}