aboutsummaryrefslogblamecommitdiffstats
path: root/plugins/WinVST/PhaseNudge/PhaseNudgeProc.cpp
blob: 150ecd5678f827ba7a1c0dbd0cb2c32b2f0e8de2 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16















                                                                                          






















































































































                                                                                                             







                                                                                               

















                                                                                                  





















































































































                                                                                                             









                                                                                               









                                     
/* ========================================
 *  PhaseNudge - PhaseNudge.h
 *  Copyright (c) 2016 airwindows, All rights reserved
 * ======================================== */

#ifndef __PhaseNudge_H
#include "PhaseNudge.h"
#endif

void PhaseNudge::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) 
{
    float* in1  =  inputs[0];
    float* in2  =  inputs[1];
    float* out1 = outputs[0];
    float* out2 = outputs[1];

	
	int allpasstemp;
	double outallpass = 0.618033988749894848204586; //golden ratio!
	//if you see 0.6180 it's not a wild stretch to wonder whether you are working with a constant
	int maxdelayTarget = (int)(pow(A,3)*1501.0);
	double wet = B;
	double dry = 1.0 - wet;
	double bridgerectifier;	

	long double inputSampleL;
	long double inputSampleR;
	long double drySampleL;
	long double drySampleR;
	    
    while (--sampleFrames >= 0)
    {
		inputSampleL = *in1;
		inputSampleR = *in2;
		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
			static int noisesource = 0;
			//this declares a variable before anything else is compiled. It won't keep assigning
			//it to 0 for every sample, it's as if the declaration doesn't exist in this context,
			//but it lets me add this denormalization fix in a single place rather than updating
			//it in three different locations. The variable isn't thread-safe but this is only
			//a random seed and we can share it with whatever.
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleL = applyresidue;
		}
		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
			static int noisesource = 0;
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleR = applyresidue;
			//this denormalization routine produces a white noise at -300 dB which the noise
			//shaping will interact with to produce a bipolar output, but the noise is actually
			//all positive. That should stop any variables from going denormal, and the routine
			//only kicks in if digital black is input. As a final touch, if you save to 24-bit
			//the silence will return to being digital black again.
		}
		drySampleL = inputSampleL;
		drySampleR = inputSampleR;
		
		inputSampleL /= 4.0;
		inputSampleR /= 4.0;
		
		bridgerectifier = fabs(inputSampleL);
		bridgerectifier = sin(bridgerectifier);
		if (inputSampleL > 0) inputSampleL = bridgerectifier;
		else inputSampleL = -bridgerectifier;
		
		bridgerectifier = fabs(inputSampleR);
		bridgerectifier = sin(bridgerectifier);
		if (inputSampleR > 0) inputSampleR = bridgerectifier;
		else inputSampleR = -bridgerectifier;
		
		if (fabs(maxdelay - maxdelayTarget) > 1500) maxdelay = maxdelayTarget;
		
		if (maxdelay < maxdelayTarget) {
			maxdelay++;
			dL[maxdelay] = (dL[0]+dL[maxdelay-1]) / 2.0;
			dR[maxdelay] = (dR[0]+dR[maxdelay-1]) / 2.0;
		}
		
		if (maxdelay > maxdelayTarget) {
			maxdelay--;
			dL[maxdelay] = (dL[0]+dL[maxdelay]) / 2.0;
			dR[maxdelay] = (dR[0]+dR[maxdelay]) / 2.0;
		}
		
		allpasstemp = one - 1;
		
		if (allpasstemp < 0 || allpasstemp > maxdelay) allpasstemp = maxdelay;
		
		inputSampleL -= dL[allpasstemp]*outallpass;
		inputSampleR -= dR[allpasstemp]*outallpass;
		dL[one] = inputSampleL;
		dR[one] = inputSampleR;
		inputSampleL *= outallpass;
		inputSampleR *= outallpass;
		one--; if (one < 0 || one > maxdelay) {one = maxdelay;}
		inputSampleL += (dL[one]);
		inputSampleR += (dR[one]);

		
		bridgerectifier = fabs(inputSampleL);
		bridgerectifier = 1.0-cos(bridgerectifier);
		if (inputSampleL > 0) inputSampleL -= bridgerectifier;
		else inputSampleL += bridgerectifier;

		bridgerectifier = fabs(inputSampleR);
		bridgerectifier = 1.0-cos(bridgerectifier);
		if (inputSampleR > 0) inputSampleR -= bridgerectifier;
		else inputSampleR += bridgerectifier;

		inputSampleL *= 4.0;
		inputSampleR *= 4.0;

		if (wet < 1.0) {
			inputSampleL = (drySampleL * dry)+(inputSampleL * wet);
			inputSampleR = (drySampleR * dry)+(inputSampleR * wet);
		}		
		
		//stereo 32 bit dither, made small and tidy.
		int expon; frexpf((float)inputSampleL, &expon);
		long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		inputSampleL += (dither-fpNShapeL); fpNShapeL = dither;
		frexpf((float)inputSampleR, &expon);
		dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		inputSampleR += (dither-fpNShapeR); fpNShapeR = dither;
		//end 32 bit dither

		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}

void PhaseNudge::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) 
{
    double* in1  =  inputs[0];
    double* in2  =  inputs[1];
    double* out1 = outputs[0];
    double* out2 = outputs[1];

	
	int allpasstemp;
	double outallpass = 0.618033988749894848204586; //golden ratio!
	//if you see 0.6180 it's not a wild stretch to wonder whether you are working with a constant
	int maxdelayTarget = (int)(pow(A,3)*1501.0);
	double wet = B;
	double dry = 1.0 - wet;
	double bridgerectifier;	
	
	long double inputSampleL;
	long double inputSampleR;
	long double drySampleL;
	long double drySampleR;
	
    while (--sampleFrames >= 0)
    {
		inputSampleL = *in1;
		inputSampleR = *in2;
		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
			static int noisesource = 0;
			//this declares a variable before anything else is compiled. It won't keep assigning
			//it to 0 for every sample, it's as if the declaration doesn't exist in this context,
			//but it lets me add this denormalization fix in a single place rather than updating
			//it in three different locations. The variable isn't thread-safe but this is only
			//a random seed and we can share it with whatever.
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleL = applyresidue;
		}
		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
			static int noisesource = 0;
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleR = applyresidue;
			//this denormalization routine produces a white noise at -300 dB which the noise
			//shaping will interact with to produce a bipolar output, but the noise is actually
			//all positive. That should stop any variables from going denormal, and the routine
			//only kicks in if digital black is input. As a final touch, if you save to 24-bit
			//the silence will return to being digital black again.
		}
		drySampleL = inputSampleL;
		drySampleR = inputSampleR;
		
		inputSampleL /= 4.0;
		inputSampleR /= 4.0;
		
		bridgerectifier = fabs(inputSampleL);
		bridgerectifier = sin(bridgerectifier);
		if (inputSampleL > 0) inputSampleL = bridgerectifier;
		else inputSampleL = -bridgerectifier;
		
		bridgerectifier = fabs(inputSampleR);
		bridgerectifier = sin(bridgerectifier);
		if (inputSampleR > 0) inputSampleR = bridgerectifier;
		else inputSampleR = -bridgerectifier;
		
		if (fabs(maxdelay - maxdelayTarget) > 1500) maxdelay = maxdelayTarget;
		
		if (maxdelay < maxdelayTarget) {
			maxdelay++;
			dL[maxdelay] = (dL[0]+dL[maxdelay-1]) / 2.0;
			dR[maxdelay] = (dR[0]+dR[maxdelay-1]) / 2.0;
		}
		
		if (maxdelay > maxdelayTarget) {
			maxdelay--;
			dL[maxdelay] = (dL[0]+dL[maxdelay]) / 2.0;
			dR[maxdelay] = (dR[0]+dR[maxdelay]) / 2.0;
		}
		
		allpasstemp = one - 1;
		
		if (allpasstemp < 0 || allpasstemp > maxdelay) allpasstemp = maxdelay;
		
		inputSampleL -= dL[allpasstemp]*outallpass;
		inputSampleR -= dR[allpasstemp]*outallpass;
		dL[one] = inputSampleL;
		dR[one] = inputSampleR;
		inputSampleL *= outallpass;
		inputSampleR *= outallpass;
		one--; if (one < 0 || one > maxdelay) {one = maxdelay;}
		inputSampleL += (dL[one]);
		inputSampleR += (dR[one]);
		
		bridgerectifier = fabs(inputSampleL);
		bridgerectifier = 1.0-cos(bridgerectifier);
		if (inputSampleL > 0) inputSampleL -= bridgerectifier;
		else inputSampleL += bridgerectifier;
		
		bridgerectifier = fabs(inputSampleR);
		bridgerectifier = 1.0-cos(bridgerectifier);
		if (inputSampleR > 0) inputSampleR -= bridgerectifier;
		else inputSampleR += bridgerectifier;
		
		inputSampleL *= 4.0;
		inputSampleR *= 4.0;
		
		if (wet < 1.0) {
			inputSampleL = (drySampleL * dry)+(inputSampleL * wet);
			inputSampleR = (drySampleR * dry)+(inputSampleR * wet);
		}		

		//stereo 64 bit dither, made small and tidy.
		int expon; frexp((double)inputSampleL, &expon);
		long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		dither /= 536870912.0; //needs this to scale to 64 bit zone
		inputSampleL += (dither-fpNShapeL); fpNShapeL = dither;
		frexp((double)inputSampleR, &expon);
		dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		dither /= 536870912.0; //needs this to scale to 64 bit zone
		inputSampleR += (dither-fpNShapeR); fpNShapeR = dither;
		//end 64 bit dither

		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}