aboutsummaryrefslogblamecommitdiffstats
path: root/plugins/MacVST/Thunder/source/ThunderProc.cpp
blob: 2cf454d353c2d88e6dcdce6575d56b985f912161 (plain) (tree)









































                                                                                       





















































































































































































                                                                                                                  







                                                                                               












































                                                                                               





















































































































































































                                                                                                                  









                                                                                               










                                     
/* ========================================
 *  Thunder - Thunder.h
 *  Copyright (c) 2016 airwindows, All rights reserved
 * ======================================== */

#ifndef __Thunder_H
#include "Thunder.h"
#endif

void Thunder::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) 
{
    float* in1  =  inputs[0];
    float* in2  =  inputs[1];
    float* out1 = outputs[0];
    float* out2 = outputs[1];

	double overallscale = 1.0;
	overallscale /= 44100.0;
	overallscale *= getSampleRate();
	
	double thunder = A * 0.4;
	double threshold = 1.0 - (thunder * 2.0);
	if (threshold < 0.01) threshold = 0.01;
	double muMakeupGain = 1.0 / threshold;
	double release = pow((1.28-thunder),5)*32768.0;
	release /= overallscale;
	double fastest = sqrt(release);
	double EQ = ((0.0275 / getSampleRate())*32000.0);
	double dcblock = EQ / 300.0;
	double basstrim = (0.01/EQ)+1.0;
	//FF parameters also ride off Speed
	double outputGain = B;
	
	double coefficient;
	double inputSense;
	
	double resultL;
	double resultR;
	double resultM;
	double resultML;
	double resultMR;
	
	long double inputSampleL;
	long double inputSampleR;
	    
    while (--sampleFrames >= 0)
    {
		inputSampleL = *in1;
		inputSampleR = *in2;
		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
			static int noisesource = 0;
			//this declares a variable before anything else is compiled. It won't keep assigning
			//it to 0 for every sample, it's as if the declaration doesn't exist in this context,
			//but it lets me add this denormalization fix in a single place rather than updating
			//it in three different locations. The variable isn't thread-safe but this is only
			//a random seed and we can share it with whatever.
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleL = applyresidue;
		}
		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
			static int noisesource = 0;
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleR = applyresidue;
			//this denormalization routine produces a white noise at -300 dB which the noise
			//shaping will interact with to produce a bipolar output, but the noise is actually
			//all positive. That should stop any variables from going denormal, and the routine
			//only kicks in if digital black is input. As a final touch, if you save to 24-bit
			//the silence will return to being digital black again.
		}

		inputSampleL = inputSampleL * muMakeupGain;
		inputSampleR = inputSampleR * muMakeupGain;
		
		if (gateL < fabs(inputSampleL)) gateL = inputSampleL;
		else gateL -= dcblock;
		if (gateR < fabs(inputSampleR)) gateR = inputSampleR;
		else gateR -= dcblock;
		//setting up gated DC blocking to control the tendency for rumble and offset
		
		//begin three FathomFive stages
		iirSampleAL += (inputSampleL * EQ * thunder);
		iirSampleAL -= (iirSampleAL * iirSampleAL * iirSampleAL * EQ);
		if (iirSampleAL > gateL) iirSampleAL -= dcblock;
		if (iirSampleAL < -gateL) iirSampleAL += dcblock;
		resultL = iirSampleAL*basstrim;
		iirSampleBL = (iirSampleBL * (1 - EQ)) + (resultL * EQ);
		resultL = iirSampleBL;
		
		iirSampleAR += (inputSampleR * EQ * thunder);
		iirSampleAR -= (iirSampleAR * iirSampleAR * iirSampleAR * EQ);
		if (iirSampleAR > gateR) iirSampleAR -= dcblock;
		if (iirSampleAR < -gateR) iirSampleAR += dcblock;
		resultR = iirSampleAR*basstrim;
		iirSampleBR = (iirSampleBR * (1 - EQ)) + (resultR * EQ);
		resultR = iirSampleBR;
		
		iirSampleAM += ((inputSampleL + inputSampleR) * EQ * thunder);
		iirSampleAM -= (iirSampleAM * iirSampleAM * iirSampleAM * EQ);
		resultM = iirSampleAM*basstrim;
		iirSampleBM = (iirSampleBM * (1 - EQ)) + (resultM * EQ);
		resultM = iirSampleBM;
		iirSampleCM = (iirSampleCM * (1 - EQ)) + (resultM * EQ);
		
		resultM = fabs(iirSampleCM);
		resultML = fabs(resultL);
		resultMR = fabs(resultR);
		
		if (resultM > resultML) resultML = resultM;
		if (resultM > resultMR) resultMR = resultM;
		//trying to restrict the buzziness
		
		if (resultML > 1.0) resultML = 1.0;
		if (resultMR > 1.0) resultMR = 1.0;
		//now we have result L, R and M the trigger modulator which must be 0-1
		
		//begin compressor section
		inputSampleL -= (iirSampleBL * thunder);
		inputSampleR -= (iirSampleBR * thunder);
		//highpass the comp section by sneaking out what will be the reinforcement
		
		inputSense = fabs(inputSampleL);
		if (fabs(inputSampleR) > inputSense)
			inputSense = fabs(inputSampleR);
		//we will take the greater of either channel and just use that, then apply the result
		//to both stereo channels.
		
		if (flip)
		{
			if (inputSense > threshold)
			{
				muVary = threshold / inputSense;
				muAttack = sqrt(fabs(muSpeedA));
				muCoefficientA = muCoefficientA * (muAttack-1.0);
				if (muVary < threshold)
				{
					muCoefficientA = muCoefficientA + threshold;
				}
				else
				{
					muCoefficientA = muCoefficientA + muVary;
				}
				muCoefficientA = muCoefficientA / muAttack;
			}
			else
			{
				muCoefficientA = muCoefficientA * ((muSpeedA * muSpeedA)-1.0);
				muCoefficientA = muCoefficientA + 1.0;
				muCoefficientA = muCoefficientA / (muSpeedA * muSpeedA);
			}
			muNewSpeed = muSpeedA * (muSpeedA-1);
			muNewSpeed = muNewSpeed + fabs(inputSense*release)+fastest;
			muSpeedA = muNewSpeed / muSpeedA;
		}
		else
		{
			if (inputSense > threshold)
			{
				muVary = threshold / inputSense;
				muAttack = sqrt(fabs(muSpeedB));
				muCoefficientB = muCoefficientB * (muAttack-1);
				if (muVary < threshold)
				{
					muCoefficientB = muCoefficientB + threshold;
				}
				else
				{
					muCoefficientB = muCoefficientB + muVary;
				}
				muCoefficientB = muCoefficientB / muAttack;
			}
			else
			{
				muCoefficientB = muCoefficientB * ((muSpeedB * muSpeedB)-1.0);
				muCoefficientB = muCoefficientB + 1.0;
				muCoefficientB = muCoefficientB / (muSpeedB * muSpeedB);
			}
			muNewSpeed = muSpeedB * (muSpeedB-1);
			muNewSpeed = muNewSpeed + fabs(inputSense*release)+fastest;
			muSpeedB = muNewSpeed / muSpeedB;
		}
		//got coefficients, adjusted speeds
		
		if (flip)
		{
			coefficient = pow(muCoefficientA,2);
			inputSampleL *= coefficient;
			inputSampleR *= coefficient;
		}
		else
		{
			coefficient = pow(muCoefficientB,2);
			inputSampleL *= coefficient;
			inputSampleR *= coefficient;
		}
		//applied compression with vari-vari-µ-µ-µ-µ-µ-µ-is-the-kitten-song o/~
		//applied gain correction to control output level- tends to constrain sound rather than inflate it
		
		inputSampleL += (resultL * resultM);
		inputSampleR += (resultR * resultM);
		//combine the two by adding the summed channnel of lows
		
		if (outputGain != 1.0) {
			inputSampleL *= outputGain;
			inputSampleR *= outputGain;
		}
		
		//stereo 32 bit dither, made small and tidy.
		int expon; frexpf((float)inputSampleL, &expon);
		long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		inputSampleL += (dither-fpNShapeL); fpNShapeL = dither;
		frexpf((float)inputSampleR, &expon);
		dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		inputSampleR += (dither-fpNShapeR); fpNShapeR = dither;
		//end 32 bit dither
		
		
		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}

void Thunder::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) 
{
    double* in1  =  inputs[0];
    double* in2  =  inputs[1];
    double* out1 = outputs[0];
    double* out2 = outputs[1];

	double overallscale = 1.0;
	overallscale /= 44100.0;
	overallscale *= getSampleRate();
	
	double thunder = A * 0.4;
	double threshold = 1.0 - (thunder * 2.0);
	if (threshold < 0.01) threshold = 0.01;
	double muMakeupGain = 1.0 / threshold;
	double release = pow((1.28-thunder),5)*32768.0;
	release /= overallscale;
	double fastest = sqrt(release);
	double EQ = ((0.0275 / getSampleRate())*32000.0);
	double dcblock = EQ / 300.0;
	double basstrim = (0.01/EQ)+1.0;
	//FF parameters also ride off Speed
	double outputGain = B;
	
	double coefficient;
	double inputSense;
	
	double resultL;
	double resultR;
	double resultM;
	double resultML;
	double resultMR;
	
	long double inputSampleL;
	long double inputSampleR;
		
    while (--sampleFrames >= 0)
    {
		inputSampleL = *in1;
		inputSampleR = *in2;
		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
			static int noisesource = 0;
			//this declares a variable before anything else is compiled. It won't keep assigning
			//it to 0 for every sample, it's as if the declaration doesn't exist in this context,
			//but it lets me add this denormalization fix in a single place rather than updating
			//it in three different locations. The variable isn't thread-safe but this is only
			//a random seed and we can share it with whatever.
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleL = applyresidue;
		}
		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
			static int noisesource = 0;
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSampleR = applyresidue;
			//this denormalization routine produces a white noise at -300 dB which the noise
			//shaping will interact with to produce a bipolar output, but the noise is actually
			//all positive. That should stop any variables from going denormal, and the routine
			//only kicks in if digital black is input. As a final touch, if you save to 24-bit
			//the silence will return to being digital black again.
		}

		inputSampleL = inputSampleL * muMakeupGain;
		inputSampleR = inputSampleR * muMakeupGain;
		
		if (gateL < fabs(inputSampleL)) gateL = inputSampleL;
		else gateL -= dcblock;
		if (gateR < fabs(inputSampleR)) gateR = inputSampleR;
		else gateR -= dcblock;
		//setting up gated DC blocking to control the tendency for rumble and offset
		
		//begin three FathomFive stages
		iirSampleAL += (inputSampleL * EQ * thunder);
		iirSampleAL -= (iirSampleAL * iirSampleAL * iirSampleAL * EQ);
		if (iirSampleAL > gateL) iirSampleAL -= dcblock;
		if (iirSampleAL < -gateL) iirSampleAL += dcblock;
		resultL = iirSampleAL*basstrim;
		iirSampleBL = (iirSampleBL * (1 - EQ)) + (resultL * EQ);
		resultL = iirSampleBL;
		
		iirSampleAR += (inputSampleR * EQ * thunder);
		iirSampleAR -= (iirSampleAR * iirSampleAR * iirSampleAR * EQ);
		if (iirSampleAR > gateR) iirSampleAR -= dcblock;
		if (iirSampleAR < -gateR) iirSampleAR += dcblock;
		resultR = iirSampleAR*basstrim;
		iirSampleBR = (iirSampleBR * (1 - EQ)) + (resultR * EQ);
		resultR = iirSampleBR;
		
		iirSampleAM += ((inputSampleL + inputSampleR) * EQ * thunder);
		iirSampleAM -= (iirSampleAM * iirSampleAM * iirSampleAM * EQ);
		resultM = iirSampleAM*basstrim;
		iirSampleBM = (iirSampleBM * (1 - EQ)) + (resultM * EQ);
		resultM = iirSampleBM;
		iirSampleCM = (iirSampleCM * (1 - EQ)) + (resultM * EQ);
		
		resultM = fabs(iirSampleCM);
		resultML = fabs(resultL);
		resultMR = fabs(resultR);
		
		if (resultM > resultML) resultML = resultM;
		if (resultM > resultMR) resultMR = resultM;
		//trying to restrict the buzziness
		
		if (resultML > 1.0) resultML = 1.0;
		if (resultMR > 1.0) resultMR = 1.0;
		//now we have result L, R and M the trigger modulator which must be 0-1
		
		//begin compressor section
		inputSampleL -= (iirSampleBL * thunder);
		inputSampleR -= (iirSampleBR * thunder);
		//highpass the comp section by sneaking out what will be the reinforcement
		
		inputSense = fabs(inputSampleL);
		if (fabs(inputSampleR) > inputSense)
			inputSense = fabs(inputSampleR);
		//we will take the greater of either channel and just use that, then apply the result
		//to both stereo channels.
		
		if (flip)
		{
			if (inputSense > threshold)
			{
				muVary = threshold / inputSense;
				muAttack = sqrt(fabs(muSpeedA));
				muCoefficientA = muCoefficientA * (muAttack-1.0);
				if (muVary < threshold)
				{
					muCoefficientA = muCoefficientA + threshold;
				}
				else
				{
					muCoefficientA = muCoefficientA + muVary;
				}
				muCoefficientA = muCoefficientA / muAttack;
			}
			else
			{
				muCoefficientA = muCoefficientA * ((muSpeedA * muSpeedA)-1.0);
				muCoefficientA = muCoefficientA + 1.0;
				muCoefficientA = muCoefficientA / (muSpeedA * muSpeedA);
			}
			muNewSpeed = muSpeedA * (muSpeedA-1);
			muNewSpeed = muNewSpeed + fabs(inputSense*release)+fastest;
			muSpeedA = muNewSpeed / muSpeedA;
		}
		else
		{
			if (inputSense > threshold)
			{
				muVary = threshold / inputSense;
				muAttack = sqrt(fabs(muSpeedB));
				muCoefficientB = muCoefficientB * (muAttack-1);
				if (muVary < threshold)
				{
					muCoefficientB = muCoefficientB + threshold;
				}
				else
				{
					muCoefficientB = muCoefficientB + muVary;
				}
				muCoefficientB = muCoefficientB / muAttack;
			}
			else
			{
				muCoefficientB = muCoefficientB * ((muSpeedB * muSpeedB)-1.0);
				muCoefficientB = muCoefficientB + 1.0;
				muCoefficientB = muCoefficientB / (muSpeedB * muSpeedB);
			}
			muNewSpeed = muSpeedB * (muSpeedB-1);
			muNewSpeed = muNewSpeed + fabs(inputSense*release)+fastest;
			muSpeedB = muNewSpeed / muSpeedB;
		}
		//got coefficients, adjusted speeds
		
		if (flip)
		{
			coefficient = pow(muCoefficientA,2);
			inputSampleL *= coefficient;
			inputSampleR *= coefficient;
		}
		else
		{
			coefficient = pow(muCoefficientB,2);
			inputSampleL *= coefficient;
			inputSampleR *= coefficient;
		}
		//applied compression with vari-vari-µ-µ-µ-µ-µ-µ-is-the-kitten-song o/~
		//applied gain correction to control output level- tends to constrain sound rather than inflate it
		
		inputSampleL += (resultL * resultM);
		inputSampleR += (resultR * resultM);
		//combine the two by adding the summed channnel of lows
		
		if (outputGain != 1.0) {
			inputSampleL *= outputGain;
			inputSampleR *= outputGain;
		}
		
		//stereo 64 bit dither, made small and tidy.
		int expon; frexp((double)inputSampleL, &expon);
		long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		dither /= 536870912.0; //needs this to scale to 64 bit zone
		inputSampleL += (dither-fpNShapeL); fpNShapeL = dither;
		frexp((double)inputSampleR, &expon);
		dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		dither /= 536870912.0; //needs this to scale to 64 bit zone
		inputSampleR += (dither-fpNShapeR); fpNShapeR = dither;
		//end 64 bit dither
		
		
		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}