aboutsummaryrefslogblamecommitdiffstats
path: root/plugins/MacVST/Gatelope/source/GatelopeProc.cpp
blob: f42904218b790e9184e33244a436e1dd6b9e40a5 (plain) (tree)































































































                                                                                                                                    
                                                                       

























                                                                                                                 

                                                           




















                                                                                                               
                                                                       

























                                                                                                                 

                                                           






















                                                                                                               







                                                                                               








                                     
























































































                                                                                                                                    
                                                                       

























                                                                                                                 

                                                           




















                                                                                                               
                                                                       

























                                                                                                                 

                                                           






















                                                                                                               









                                                                                               








                                     
 
/* ========================================
 *  Gatelope - Gatelope.h
 *  Copyright (c) 2016 airwindows, All rights reserved
 * ======================================== */

#ifndef __Gatelope_H
#include "Gatelope.h"
#endif

void Gatelope::processReplacing(float **inputs, float **outputs, VstInt32 sampleFrames) 
{
    float* in1  =  inputs[0];
    float* in2  =  inputs[1];
    float* out1 = outputs[0];
    float* out2 = outputs[1];

	double overallscale = 1.0;
	overallscale /= 44100.0;
	overallscale *= getSampleRate();
	//speed settings around release
	double threshold = pow(A,2);
	//gain settings around threshold
	double trebledecay = pow(1.0-B,2)/4196.0;
	double bassdecay =  pow(1.0-C,2)/8192.0;
	double slowAttack = (pow(D,3)*3)+0.003;
	double wet = E;
	slowAttack /= overallscale;
	trebledecay /= overallscale;
	bassdecay /= overallscale;
	trebledecay += 1.0;
	bassdecay += 1.0;
	double attackSpeed;
	double highestSample;
	//this VST version comes from the AU, Gatelinked, because it's stereo.
	//if used on a mono track it'll act like the mono N to N
    
    while (--sampleFrames >= 0)
    {
		long double inputSampleL = *in1;
		long double inputSampleR = *in2;

		static int noisesourceL = 0;
		static int noisesourceR = 850010;
		int residue;
		double applyresidue;
		
		noisesourceL = noisesourceL % 1700021; noisesourceL++;
		residue = noisesourceL * noisesourceL;
		residue = residue % 170003; residue *= residue;
		residue = residue % 17011; residue *= residue;
		residue = residue % 1709; residue *= residue;
		residue = residue % 173; residue *= residue;
		residue = residue % 17;
		applyresidue = residue;
		applyresidue *= 0.00000001;
		applyresidue *= 0.00000001;
		inputSampleL += applyresidue;
		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
			inputSampleL -= applyresidue;
		}
		
		noisesourceR = noisesourceR % 1700021; noisesourceR++;
		residue = noisesourceR * noisesourceR;
		residue = residue % 170003; residue *= residue;
		residue = residue % 17011; residue *= residue;
		residue = residue % 1709; residue *= residue;
		residue = residue % 173; residue *= residue;
		residue = residue % 17;
		applyresidue = residue;
		applyresidue *= 0.00000001;
		applyresidue *= 0.00000001;
		inputSampleR += applyresidue;
		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
			inputSampleR -= applyresidue;
		}
		//for live air, we always apply the dither noise. Then, if our result is 
		//effectively digital black, we'll subtract it again. We want a 'air' hiss
		double drySampleL = inputSampleL;
		double drySampleR = inputSampleR;
		
		if (fabs(inputSampleL) > fabs(inputSampleR)) {
			attackSpeed = slowAttack - (fabs(inputSampleL)*slowAttack*0.5);
			highestSample = fabs(inputSampleL);
		} else {
			attackSpeed = slowAttack - (fabs(inputSampleR)*slowAttack*0.5); //we're triggering off the highest amplitude
			highestSample = fabs(inputSampleR); //and making highestSample the abs() of that amplitude
		}
		
		if (attackSpeed < 0.0) attackSpeed = 0.0;
		//softening onset click depending on how hard we're getting it
		
		if (flip)
		{
			if (highestSample > threshold)
			{
				treblefreq += attackSpeed;
				if (treblefreq > 2.0) treblefreq = 2.0;
				bassfreq -= attackSpeed;
				bassfreq -= attackSpeed;
				if (bassfreq < 0.0) bassfreq = 0.0;
				iirLowpassAL = iirLowpassBL = inputSampleL;
				iirHighpassAL = iirHighpassBL = 0.0;
				iirLowpassAR = iirLowpassBR = inputSampleR;
				iirHighpassAR = iirHighpassBR = 0.0;
			}
			else
			{
				treblefreq -= bassfreq;
				treblefreq /= trebledecay;
				treblefreq += bassfreq;
				bassfreq -= treblefreq;
				bassfreq /= bassdecay;
				bassfreq += treblefreq;
			}
			
			if (treblefreq >= 1.0) {
				iirLowpassAL = inputSampleL;
				iirLowpassAR = inputSampleR;
			} else {
				iirLowpassAL = (iirLowpassAL * (1.0 - treblefreq)) + (inputSampleL * treblefreq);
				iirLowpassAR = (iirLowpassAR * (1.0 - treblefreq)) + (inputSampleR * treblefreq);
			}
			
			if (bassfreq > 1.0) bassfreq = 1.0;
			
			if (bassfreq > 0.0) {
				iirHighpassAL = (iirHighpassAL * (1.0 - bassfreq)) + (inputSampleL * bassfreq);
				iirHighpassAR = (iirHighpassAR * (1.0 - bassfreq)) + (inputSampleR * bassfreq);
			} else {
				iirHighpassAL = 0.0;
				iirHighpassAR = 0.0;
			}
			
			if (treblefreq > bassfreq) {
				inputSampleL = (iirLowpassAL - iirHighpassAL);
				inputSampleR = (iirLowpassAR - iirHighpassAR);
			} else {
				inputSampleL = 0.0;
				inputSampleR = 0.0;
			}
		}
		else
		{
			if (highestSample > threshold)
			{
				treblefreq += attackSpeed;
				if (treblefreq > 2.0) treblefreq = 2.0;
				bassfreq -= attackSpeed;
				bassfreq -= attackSpeed;
				if (bassfreq < 0.0) bassfreq = 0.0;
				iirLowpassAL = iirLowpassBL = inputSampleL;
				iirHighpassAL = iirHighpassBL = 0.0;
				iirLowpassAR = iirLowpassBR = inputSampleR;
				iirHighpassAR = iirHighpassBR = 0.0;
			}
			else
			{
				treblefreq -= bassfreq;
				treblefreq /= trebledecay;
				treblefreq += bassfreq;
				bassfreq -= treblefreq;
				bassfreq /= bassdecay;
				bassfreq += treblefreq;
			}
			
			if (treblefreq >= 1.0) {
				iirLowpassBL = inputSampleL;
				iirLowpassBR = inputSampleR;
			} else {
				iirLowpassBL = (iirLowpassBL * (1.0 - treblefreq)) + (inputSampleL * treblefreq);
				iirLowpassBR = (iirLowpassBR * (1.0 - treblefreq)) + (inputSampleR * treblefreq);
			}
			
			if (bassfreq > 1.0) bassfreq = 1.0;
			
			if (bassfreq > 0.0) {
				iirHighpassBL = (iirHighpassBL * (1.0 - bassfreq)) + (inputSampleL * bassfreq);
				iirHighpassBR = (iirHighpassBR * (1.0 - bassfreq)) + (inputSampleR * bassfreq);
			} else {
				iirHighpassBL = 0.0;
				iirHighpassBR = 0.0;
			}
			
			if (treblefreq > bassfreq) {
				inputSampleL = (iirLowpassBL - iirHighpassBL);
				inputSampleR = (iirLowpassBR - iirHighpassBR);
			} else {
				inputSampleL = 0.0;
				inputSampleR = 0.0;
			}			
		}
		//done full gated envelope filtered effect
		inputSampleL  = ((1-wet)*drySampleL)+(wet*inputSampleL);
		inputSampleR  = ((1-wet)*drySampleR)+(wet*inputSampleR);
		//we're going to set up a dry/wet control instead of a min. threshold
		
		flip = !flip;
		
		//stereo 32 bit dither, made small and tidy.
		int expon; frexpf((float)inputSampleL, &expon);
		long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		inputSampleL += (dither-fpNShapeL); fpNShapeL = dither;
		frexpf((float)inputSampleR, &expon);
		dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		inputSampleR += (dither-fpNShapeR); fpNShapeR = dither;
		//end 32 bit dither
		
		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}

void Gatelope::processDoubleReplacing(double **inputs, double **outputs, VstInt32 sampleFrames) 
{
    double* in1  =  inputs[0];
    double* in2  =  inputs[1];
    double* out1 = outputs[0];
    double* out2 = outputs[1];

	double overallscale = 1.0;
	overallscale /= 44100.0;
	overallscale *= getSampleRate();
	//speed settings around release
	double threshold = pow(A,2);
	//gain settings around threshold
	double trebledecay = pow(1.0-B,2)/4196.0;
	double bassdecay =  pow(1.0-C,2)/8192.0;
	double slowAttack = (pow(D,3)*3)+0.003;
	double wet = E;
	slowAttack /= overallscale;
	trebledecay /= overallscale;
	bassdecay /= overallscale;
	trebledecay += 1.0;
	bassdecay += 1.0;
	double attackSpeed;
	double highestSample;
	//this VST version comes from the AU, Gatelinked, because it's stereo.
	//if used on a mono track it'll act like the mono N to N
    
    while (--sampleFrames >= 0)
    {
		long double inputSampleL = *in1;
		long double inputSampleR = *in2;

		static int noisesourceL = 0;
		static int noisesourceR = 850010;
		int residue;
		double applyresidue;
		
		noisesourceL = noisesourceL % 1700021; noisesourceL++;
		residue = noisesourceL * noisesourceL;
		residue = residue % 170003; residue *= residue;
		residue = residue % 17011; residue *= residue;
		residue = residue % 1709; residue *= residue;
		residue = residue % 173; residue *= residue;
		residue = residue % 17;
		applyresidue = residue;
		applyresidue *= 0.00000001;
		applyresidue *= 0.00000001;
		inputSampleL += applyresidue;
		if (inputSampleL<1.2e-38 && -inputSampleL<1.2e-38) {
			inputSampleL -= applyresidue;
		}
		
		noisesourceR = noisesourceR % 1700021; noisesourceR++;
		residue = noisesourceR * noisesourceR;
		residue = residue % 170003; residue *= residue;
		residue = residue % 17011; residue *= residue;
		residue = residue % 1709; residue *= residue;
		residue = residue % 173; residue *= residue;
		residue = residue % 17;
		applyresidue = residue;
		applyresidue *= 0.00000001;
		applyresidue *= 0.00000001;
		inputSampleR += applyresidue;
		if (inputSampleR<1.2e-38 && -inputSampleR<1.2e-38) {
			inputSampleR -= applyresidue;
		}
		//for live air, we always apply the dither noise. Then, if our result is 
		//effectively digital black, we'll subtract it again. We want a 'air' hiss
		double drySampleL = inputSampleL;
		double drySampleR = inputSampleR;

		if (fabs(inputSampleL) > fabs(inputSampleR)) {
			attackSpeed = slowAttack - (fabs(inputSampleL)*slowAttack*0.5);
			highestSample = fabs(inputSampleL);
		} else {
			attackSpeed = slowAttack - (fabs(inputSampleR)*slowAttack*0.5); //we're triggering off the highest amplitude
			highestSample = fabs(inputSampleR); //and making highestSample the abs() of that amplitude
		}
		
		if (attackSpeed < 0.0) attackSpeed = 0.0;
		//softening onset click depending on how hard we're getting it
		
		if (flip)
		{
			if (highestSample > threshold)
			{
				treblefreq += attackSpeed;
				if (treblefreq > 2.0) treblefreq = 2.0;
				bassfreq -= attackSpeed;
				bassfreq -= attackSpeed;
				if (bassfreq < 0.0) bassfreq = 0.0;
				iirLowpassAL = iirLowpassBL = inputSampleL;
				iirHighpassAL = iirHighpassBL = 0.0;
				iirLowpassAR = iirLowpassBR = inputSampleR;
				iirHighpassAR = iirHighpassBR = 0.0;
			}
			else
			{
				treblefreq -= bassfreq;
				treblefreq /= trebledecay;
				treblefreq += bassfreq;
				bassfreq -= treblefreq;
				bassfreq /= bassdecay;
				bassfreq += treblefreq;
			}
			
			if (treblefreq >= 1.0) {
				iirLowpassAL = inputSampleL;
				iirLowpassAR = inputSampleR;
			} else {
				iirLowpassAL = (iirLowpassAL * (1.0 - treblefreq)) + (inputSampleL * treblefreq);
				iirLowpassAR = (iirLowpassAR * (1.0 - treblefreq)) + (inputSampleR * treblefreq);
			}
			
			if (bassfreq > 1.0) bassfreq = 1.0;
			
			if (bassfreq > 0.0) {
				iirHighpassAL = (iirHighpassAL * (1.0 - bassfreq)) + (inputSampleL * bassfreq);
				iirHighpassAR = (iirHighpassAR * (1.0 - bassfreq)) + (inputSampleR * bassfreq);
			} else {
				iirHighpassAL = 0.0;
				iirHighpassAR = 0.0;
			}
			
			if (treblefreq > bassfreq) {
				inputSampleL = (iirLowpassAL - iirHighpassAL);
				inputSampleR = (iirLowpassAR - iirHighpassAR);
			} else {
				inputSampleL = 0.0;
				inputSampleR = 0.0;
			}
		}
		else
		{
			if (highestSample > threshold)
			{
				treblefreq += attackSpeed;
				if (treblefreq > 2.0) treblefreq = 2.0;
				bassfreq -= attackSpeed;
				bassfreq -= attackSpeed;
				if (bassfreq < 0.0) bassfreq = 0.0;
				iirLowpassAL = iirLowpassBL = inputSampleL;
				iirHighpassAL = iirHighpassBL = 0.0;
				iirLowpassAR = iirLowpassBR = inputSampleR;
				iirHighpassAR = iirHighpassBR = 0.0;
			}
			else
			{
				treblefreq -= bassfreq;
				treblefreq /= trebledecay;
				treblefreq += bassfreq;
				bassfreq -= treblefreq;
				bassfreq /= bassdecay;
				bassfreq += treblefreq;
			}
			
			if (treblefreq >= 1.0) {
				iirLowpassBL = inputSampleL;
				iirLowpassBR = inputSampleR;
			} else {
				iirLowpassBL = (iirLowpassBL * (1.0 - treblefreq)) + (inputSampleL * treblefreq);
				iirLowpassBR = (iirLowpassBR * (1.0 - treblefreq)) + (inputSampleR * treblefreq);
			}
			
			if (bassfreq > 1.0) bassfreq = 1.0;
			
			if (bassfreq > 0.0) {
				iirHighpassBL = (iirHighpassBL * (1.0 - bassfreq)) + (inputSampleL * bassfreq);
				iirHighpassBR = (iirHighpassBR * (1.0 - bassfreq)) + (inputSampleR * bassfreq);
			} else {
				iirHighpassBL = 0.0;
				iirHighpassBR = 0.0;
			}
			
			if (treblefreq > bassfreq) {
				inputSampleL = (iirLowpassBL - iirHighpassBL);
				inputSampleR = (iirLowpassBR - iirHighpassBR);
			} else {
				inputSampleL = 0.0;
				inputSampleR = 0.0;
			}			
		}
		//done full gated envelope filtered effect
		inputSampleL  = ((1-wet)*drySampleL)+(wet*inputSampleL);
		inputSampleR  = ((1-wet)*drySampleR)+(wet*inputSampleR);
		//we're going to set up a dry/wet control instead of a min. threshold
		
		flip = !flip;
		
		//stereo 64 bit dither, made small and tidy.
		int expon; frexp((double)inputSampleL, &expon);
		long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		dither /= 536870912.0; //needs this to scale to 64 bit zone
		inputSampleL += (dither-fpNShapeL); fpNShapeL = dither;
		frexp((double)inputSampleR, &expon);
		dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		dither /= 536870912.0; //needs this to scale to 64 bit zone
		inputSampleR += (dither-fpNShapeR); fpNShapeR = dither;
		//end 64 bit dither
		
		*out1 = inputSampleL;
		*out2 = inputSampleR;

		*in1++;
		*in2++;
		*out1++;
		*out2++;
    }
}