aboutsummaryrefslogblamecommitdiffstats
path: root/plugins/MacAU/Monitoring/Monitoring.cpp
blob: 158373bb65c5bca54e4ffbdadf7bbf3a85915389 (plain) (tree)


























































































                                                                                                                                              

                                          

                                        

                                        

                                        
































                                                                                                                   
                                                   

















































































































































                                                                                                                                                                                  

                                                                                                                  




































































































































































































































































                                                                                                                                                            

                                
                                                                                                   





                                                                                                                                                


















                                                                                                                         



                                




                                                                                                     



                                                                                                                     







                                                                                                                                      


                                                                                                                
                                
                                                                       



                                                                                                         
                                

                                                                                                     

                                                                                                   
                                                                                              
                                                                





                                                                                                                
                                
                                                                       



                                                                                                                   
                                





                                                                                                                      



                                                                                                     




                                                                                                                      



                                                                                                                                                            




                                                                                              





























































































































                                                                                                                   
/*
*	File:		Monitoring.cpp
*	
*	Version:	1.0
* 
*	Created:	9/2/19
*	
*	Copyright:  Copyright � 2019 Airwindows, All Rights Reserved
* 
*	Disclaimer:	IMPORTANT:  This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in 
*				consideration of your agreement to the following terms, and your use, installation, modification 
*				or redistribution of this Apple software constitutes acceptance of these terms.  If you do 
*				not agree with these terms, please do not use, install, modify or redistribute this Apple 
*				software.
*
*				In consideration of your agreement to abide by the following terms, and subject to these terms, 
*				Apple grants you a personal, non-exclusive license, under Apple's copyrights in this 
*				original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the 
*				Apple Software, with or without modifications, in source and/or binary forms; provided that if you 
*				redistribute the Apple Software in its entirety and without modifications, you must retain this 
*				notice and the following text and disclaimers in all such redistributions of the Apple Software. 
*				Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to 
*				endorse or promote products derived from the Apple Software without specific prior written 
*				permission from Apple.  Except as expressly stated in this notice, no other rights or 
*				licenses, express or implied, are granted by Apple herein, including but not limited to any 
*				patent rights that may be infringed by your derivative works or by other works in which the 
*				Apple Software may be incorporated.
*
*				The Apple Software is provided by Apple on an "AS IS" basis.  APPLE MAKES NO WARRANTIES, EXPRESS OR 
*				IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY 
*				AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE 
*				OR IN COMBINATION WITH YOUR PRODUCTS.
*
*				IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL 
*				DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 
*				OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, 
*				REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER 
*				UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN 
*				IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/*=============================================================================
	Monitoring.cpp
	
=============================================================================*/
#include "Monitoring.h"


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

COMPONENT_ENTRY(Monitoring)


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	Monitoring::Monitoring
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Monitoring::Monitoring(AudioUnit component)
	: AUEffectBase(component)
{
	CreateElements();
	Globals()->UseIndexedParameters(kNumberOfParameters);
	SetParameter(kParam_One, kDefaultValue_ParamOne );
         
#if AU_DEBUG_DISPATCHER
	mDebugDispatcher = new AUDebugDispatcher (this);
#endif
	
}


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	Monitoring::GetParameterValueStrings
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult			Monitoring::GetParameterValueStrings(AudioUnitScope		inScope,
                                                                AudioUnitParameterID	inParameterID,
                                                                CFArrayRef *		outStrings)
{
	if ((inScope == kAudioUnitScope_Global) && (inParameterID == kParam_One)) //ID must be actual name of parameter identifier, not number
	{
		if (outStrings == NULL) return noErr;
		CFStringRef strings [] =
		{
			kMenuItem_NJAD,
			kMenuItem_NJCD,
			kMenuItem_PEAK,
			kMenuItem_SLEW,
			kMenuItem_SUBS,
			kMenuItem_MONO,
			kMenuItem_SIDE,
			kMenuItem_VINYL,
			kMenuItem_AURAT,
			kMenuItem_MONORAT,
			kMenuItem_MONOLAT,
			kMenuItem_PHONE,
			kMenuItem_CANSA,
			kMenuItem_CANSB,
			kMenuItem_CANSC,
			kMenuItem_CANSD,
			kMenuItem_TRICK
		};
		*outStrings = CFArrayCreate (
									 NULL,
									 (const void **) strings,
									 (sizeof (strings) / sizeof (strings [0])),
									 NULL
									 );
		return noErr;
	}
    return kAudioUnitErr_InvalidProperty;
}



//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	Monitoring::GetParameterInfo
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult			Monitoring::GetParameterInfo(AudioUnitScope		inScope,
                                                        AudioUnitParameterID	inParameterID,
                                                        AudioUnitParameterInfo	&outParameterInfo )
{
	ComponentResult result = noErr;

	outParameterInfo.flags = 	kAudioUnitParameterFlag_IsWritable
						|		kAudioUnitParameterFlag_IsReadable;
    
    if (inScope == kAudioUnitScope_Global) {
        switch(inParameterID)
        {
			case kParam_One:
                AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false);
				outParameterInfo.unit = kAudioUnitParameterUnit_Indexed;
                outParameterInfo.minValue = kNJAD;
                outParameterInfo.maxValue = kTRICK;
                outParameterInfo.defaultValue = kDefaultValue_ParamOne;
                break;
           default:
                result = kAudioUnitErr_InvalidParameter;
                break;
            }
	} else {
        result = kAudioUnitErr_InvalidParameter;
    }
    


	return result;
}

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	Monitoring::GetPropertyInfo
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult			Monitoring::GetPropertyInfo (AudioUnitPropertyID	inID,
                                                        AudioUnitScope		inScope,
                                                        AudioUnitElement	inElement,
                                                        UInt32 &		outDataSize,
                                                        Boolean &		outWritable)
{
	return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable);
}

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// state that plugin supports only stereo-in/stereo-out processing
UInt32 Monitoring::SupportedNumChannels(const AUChannelInfo ** outInfo)
{
	if (outInfo != NULL)
	{
		static AUChannelInfo info;
		info.inChannels = 2;
		info.outChannels = 2;
		*outInfo = &info;
	}

	return 1;
}

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	Monitoring::GetProperty
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult			Monitoring::GetProperty(	AudioUnitPropertyID inID,
                                                        AudioUnitScope 		inScope,
                                                        AudioUnitElement 	inElement,
                                                        void *			outData )
{
	return AUEffectBase::GetProperty (inID, inScope, inElement, outData);
}

//	Monitoring::Initialize
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult Monitoring::Initialize()
{
    ComponentResult result = AUEffectBase::Initialize();
    if (result == noErr)
        Reset(kAudioUnitScope_Global, 0);
    return result;
}

#pragma mark ____MonitoringEffectKernel



//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	Monitoring::MonitoringKernel::Reset()
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult		Monitoring::Reset(AudioUnitScope inScope, AudioUnitElement inElement)
{
	bynL[0] = 1000.0;
	bynL[1] = 301.0;
	bynL[2] = 176.0;
	bynL[3] = 125.0;
	bynL[4] = 97.0;
	bynL[5] = 79.0;
	bynL[6] = 67.0;
	bynL[7] = 58.0;
	bynL[8] = 51.0;
	bynL[9] = 46.0;
	bynL[10] = 1000.0;
	noiseShapingL = 0.0;
	bynR[0] = 1000.0;
	bynR[1] = 301.0;
	bynR[2] = 176.0;
	bynR[3] = 125.0;
	bynR[4] = 97.0;
	bynR[5] = 79.0;
	bynR[6] = 67.0;
	bynR[7] = 58.0;
	bynR[8] = 51.0;
	bynR[9] = 46.0;
	bynR[10] = 1000.0;
	noiseShapingR = 0.0;
	//end NJAD
	for(int count = 0; count < 1502; count++) {
		aL[count] = 0.0; bL[count] = 0.0; cL[count] = 0.0; dL[count] = 0.0;
		aR[count] = 0.0; bR[count] = 0.0; cR[count] = 0.0; dR[count] = 0.0;
	}
	ax = 1; bx = 1; cx = 1; dx = 1;
	//PeaksOnly
	lastSampleL = 0.0; lastSampleR = 0.0;
	//SlewOnly
	iirSampleAL = 0.0; iirSampleBL = 0.0; iirSampleCL = 0.0; iirSampleDL = 0.0; iirSampleEL = 0.0; iirSampleFL = 0.0; iirSampleGL = 0.0;
	iirSampleHL = 0.0; iirSampleIL = 0.0; iirSampleJL = 0.0; iirSampleKL = 0.0; iirSampleLL = 0.0; iirSampleML = 0.0; iirSampleNL = 0.0; iirSampleOL = 0.0; iirSamplePL = 0.0;
	iirSampleQL = 0.0; iirSampleRL = 0.0; iirSampleSL = 0.0;
	iirSampleTL = 0.0; iirSampleUL = 0.0; iirSampleVL = 0.0;
	iirSampleWL = 0.0; iirSampleXL = 0.0; iirSampleYL = 0.0; iirSampleZL = 0.0;

	iirSampleAR = 0.0; iirSampleBR = 0.0; iirSampleCR = 0.0; iirSampleDR = 0.0; iirSampleER = 0.0; iirSampleFR = 0.0; iirSampleGR = 0.0;
	iirSampleHR = 0.0; iirSampleIR = 0.0; iirSampleJR = 0.0; iirSampleKR = 0.0; iirSampleLR = 0.0; iirSampleMR = 0.0; iirSampleNR = 0.0; iirSampleOR = 0.0; iirSamplePR = 0.0;
	iirSampleQR = 0.0; iirSampleRR = 0.0; iirSampleSR = 0.0;
	iirSampleTR = 0.0; iirSampleUR = 0.0; iirSampleVR = 0.0;
	iirSampleWR = 0.0; iirSampleXR = 0.0; iirSampleYR = 0.0; iirSampleZR = 0.0; // o/`	
	//SubsOnly
	for (int x = 0; x < 11; x++) {biquad[x] = 0.0;}
	//Bandpasses
	fpd = 17;
	return noErr;
}

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	Monitoring::ProcessBufferLists
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
OSStatus		Monitoring::ProcessBufferLists(AudioUnitRenderActionFlags & ioActionFlags,
													const AudioBufferList & inBuffer,
                                                    AudioBufferList & outBuffer,
                                                    UInt32 			inFramesToProcess)
{
	Float32 * inputL = (Float32*)(inBuffer.mBuffers[0].mData);
	Float32 * inputR = (Float32*)(inBuffer.mBuffers[1].mData);
	Float32 * outputL = (Float32*)(outBuffer.mBuffers[0].mData);
	Float32 * outputR = (Float32*)(outBuffer.mBuffers[1].mData);
	UInt32 nSampleFrames = inFramesToProcess;
	long double overallscale = 1.0;
	overallscale /= 44100.0;
	overallscale *= GetSampleRate();	
	int processing = (int) GetParameter( kParam_One );
	int am = (int)149.0 * overallscale;
	int bm = (int)179.0 * overallscale;
	int cm = (int)191.0 * overallscale;
	int dm = (int)223.0 * overallscale; //these are 'good' primes, spacing out the allpasses
	int allpasstemp;
	//for PeaksOnly
	biquad[0] = 0.0375/overallscale; biquad[1] = 0.1575; //define as AURAT, MONORAT, MONOLAT unless overridden
	if (processing == kVINYL) {biquad[0] = 0.0385/overallscale; biquad[1] = 0.0825;}
	if (processing == kPHONE) {biquad[0] = 0.1245/overallscale; biquad[1] = 0.46;}	
	double K = tan(M_PI * biquad[0]);
	double norm = 1.0 / (1.0 + K / biquad[1] + K * K);
	biquad[2] = K / biquad[1] * norm;
	biquad[4] = -biquad[2]; //for bandpass, ignore [3] = 0.0
	biquad[5] = 2.0 * (K * K - 1.0) * norm;
	biquad[6] = (1.0 - K / biquad[1] + K * K) * norm;
	//for Bandpasses
	
	while (nSampleFrames-- > 0) {
		long double inputSampleL = *inputL;
		long double inputSampleR = *inputR;
		if (fabs(inputSampleL)<1.18e-37) inputSampleL = fpd * 1.18e-37;
		if (fabs(inputSampleR)<1.18e-37) inputSampleR = fpd * 1.18e-37;
		
		switch (processing)
		{
			case 0:
			case 1:
				break;
			case 2:				
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL);
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR);
				//amplitude aspect
				allpasstemp = ax - 1; if (allpasstemp < 0 || allpasstemp > am) allpasstemp = am;
				inputSampleL -= aL[allpasstemp]*0.5; aL[ax] = inputSampleL; inputSampleL *= 0.5;
				inputSampleR -= aR[allpasstemp]*0.5; aR[ax] = inputSampleR; inputSampleR *= 0.5;
				ax--; if (ax < 0 || ax > am) {ax = am;}
				inputSampleL += (aL[ax]);
				inputSampleR += (aR[ax]);
				//a single Midiverb-style allpass
				
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL);
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR);
				//amplitude aspect
				
				allpasstemp = bx - 1; if (allpasstemp < 0 || allpasstemp > bm) allpasstemp = bm;
				inputSampleL -= bL[allpasstemp]*0.5; bL[bx] = inputSampleL; inputSampleL *= 0.5;
				inputSampleR -= bR[allpasstemp]*0.5; bR[bx] = inputSampleR; inputSampleR *= 0.5;
				bx--; if (bx < 0 || bx > bm) {bx = bm;}
				inputSampleL += (bL[bx]);
				inputSampleR += (bR[bx]);
				//a single Midiverb-style allpass
				
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL);
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR);
				//amplitude aspect
				
				allpasstemp = cx - 1; if (allpasstemp < 0 || allpasstemp > cm) allpasstemp = cm;
				inputSampleL -= cL[allpasstemp]*0.5; cL[cx] = inputSampleL; inputSampleL *= 0.5;
				inputSampleR -= cR[allpasstemp]*0.5; cR[cx] = inputSampleR; inputSampleR *= 0.5;
				cx--; if (cx < 0 || cx > cm) {cx = cm;}
				inputSampleL += (cL[cx]);
				inputSampleR += (cR[cx]);
				//a single Midiverb-style allpass
				
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL);
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR);
				//amplitude aspect
				
				allpasstemp = dx - 1; if (allpasstemp < 0 || allpasstemp > dm) allpasstemp = dm;
				inputSampleL -= dL[allpasstemp]*0.5; dL[dx] = inputSampleL; inputSampleL *= 0.5;
				inputSampleR -= dR[allpasstemp]*0.5; dR[dx] = inputSampleR; inputSampleR *= 0.5;
				dx--; if (dx < 0 || dx > dm) {dx = dm;}
				inputSampleL += (dL[dx]);
				inputSampleR += (dR[dx]);
				//a single Midiverb-style allpass
				
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL);
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR);
				//amplitude aspect
				
				inputSampleL *= 0.63679; inputSampleR *= 0.63679; //scale it to 0dB output at full blast
				//PeaksOnly
				break;
			case 3:
				Float64 trim;
				trim = 2.302585092994045684017991; //natural logarithm of 10
				long double slewSample; slewSample = (inputSampleL - lastSampleL)*trim;
				lastSampleL = inputSampleL;
				if (slewSample > 1.0) slewSample = 1.0; if (slewSample < -1.0) slewSample = -1.0;
				inputSampleL = slewSample;
				slewSample = (inputSampleR - lastSampleR)*trim;
				lastSampleR = inputSampleR;
				if (slewSample > 1.0) slewSample = 1.0; if (slewSample < -1.0) slewSample = -1.0;
				inputSampleR = slewSample;
				//SlewOnly
				break;
			case 4:
				Float64 iirAmount; iirAmount = (2250/44100.0) / overallscale;
				Float64 gain; gain = 1.42;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				
				iirSampleAL = (iirSampleAL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleAL;
				iirSampleAR = (iirSampleAR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleAR;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSampleBL = (iirSampleBL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleBL;
				iirSampleBR = (iirSampleBR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleBR;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSampleCL = (iirSampleCL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleCL;
				iirSampleCR = (iirSampleCR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleCR;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSampleDL = (iirSampleDL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleDL;
				iirSampleDR = (iirSampleDR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleDR;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSampleEL = (iirSampleEL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleEL;
				iirSampleER = (iirSampleER * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleER;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSampleFL = (iirSampleFL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleFL;
				iirSampleFR = (iirSampleFR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleFR;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSampleGL = (iirSampleGL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleGL;
				iirSampleGR = (iirSampleGR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleGR;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSampleHL = (iirSampleHL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleHL;
				iirSampleHR = (iirSampleHR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleHR;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSampleIL = (iirSampleIL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleIL;
				iirSampleIR = (iirSampleIR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleIR;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSampleJL = (iirSampleJL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleJL;
				iirSampleJR = (iirSampleJR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleJR;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSampleKL = (iirSampleKL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleKL;
				iirSampleKR = (iirSampleKR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleKR;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSampleLL = (iirSampleLL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleLL;
				iirSampleLR = (iirSampleLR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleLR;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSampleML = (iirSampleML * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleML;
				iirSampleMR = (iirSampleMR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleMR;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSampleNL = (iirSampleNL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleNL;
				iirSampleNR = (iirSampleNR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleNR;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSampleOL = (iirSampleOL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleOL;
				iirSampleOR = (iirSampleOR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleOR;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSamplePL = (iirSamplePL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSamplePL;
				iirSamplePR = (iirSamplePR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSamplePR;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSampleQL = (iirSampleQL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleQL;
				iirSampleQR = (iirSampleQR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleQR;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSampleRL = (iirSampleRL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleRL;
				iirSampleRR = (iirSampleRR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleRR;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSampleSL = (iirSampleSL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleSL;
				iirSampleSR = (iirSampleSR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleSR;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSampleTL = (iirSampleTL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleTL;
				iirSampleTR = (iirSampleTR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleTR;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSampleUL = (iirSampleUL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleUL;
				iirSampleUR = (iirSampleUR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleUR;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSampleVL = (iirSampleVL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleVL;
				iirSampleVR = (iirSampleVR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleVR;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSampleWL = (iirSampleWL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleWL;
				iirSampleWR = (iirSampleWR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleWR;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSampleXL = (iirSampleXL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleXL;
				iirSampleXR = (iirSampleXR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleXR;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSampleYL = (iirSampleYL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleYL;
				iirSampleYR = (iirSampleYR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleYR;
				inputSampleL *= gain; inputSampleR *= gain; gain = ((gain-1)*0.75)+1;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				
				iirSampleZL = (iirSampleZL * (1.0-iirAmount)) + (inputSampleL * iirAmount); inputSampleL = iirSampleZL;
				iirSampleZR = (iirSampleZR * (1.0-iirAmount)) + (inputSampleR * iirAmount); inputSampleR = iirSampleZR;
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;				
				//SubsOnly
				break;
			case 5:
			case 6:
				long double mid; mid = inputSampleL + inputSampleR;
				long double side; side = inputSampleL - inputSampleR;
				if (processing < 6) side = 0.0;
				else mid = 0.0; //mono monitoring, or side-only monitoring
				inputSampleL = (mid+side)/2.0;
				inputSampleR = (mid-side)/2.0; 
				break;
			case 7:
			case 8:
			case 9:
			case 10:
			case 11:
				//Bandpass: changes in EQ are up in the variable defining, not here
				//7 Vinyl, 8 9 10 Aurat, 11 Phone
				
				if (processing == 9) {inputSampleR = (inputSampleL + inputSampleR)*0.5;inputSampleL = 0.0;}
				if (processing == 10) {inputSampleL = (inputSampleL + inputSampleR)*0.5;inputSampleR = 0.0;}
				if (processing == 11) {long double M; M = (inputSampleL + inputSampleR)*0.5; inputSampleL = M;inputSampleR = M;}
				
				inputSampleL = sin(inputSampleL); inputSampleR = sin(inputSampleR);
				//encode Console5: good cleanness
				
				long double tempSampleL; tempSampleL = (inputSampleL * biquad[2]) + biquad[7];
				biquad[7] = (-tempSampleL * biquad[5]) + biquad[8];
				biquad[8] = (inputSampleL * biquad[4]) - (tempSampleL * biquad[6]);
				inputSampleL = tempSampleL; //like mono AU, 7 and 8 store L channel
				
				long double tempSampleR; tempSampleR = (inputSampleR * biquad[2]) + biquad[9];
				biquad[9] = (-tempSampleR * biquad[5]) + biquad[10];
				biquad[10] = (inputSampleR * biquad[4]) - (tempSampleR * biquad[6]);
				inputSampleR = tempSampleR; //note: 9 and 10 store the R channel
				
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0;
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0;
				//without this, you can get a NaN condition where it spits out DC offset at full blast!
				inputSampleL = asin(inputSampleL); inputSampleR = asin(inputSampleR);
				//amplitude aspect
				break;
			case 12:
			case 13:
			case 14:
			case 15:
				if (processing == 12) {inputSampleL *= 0.855; inputSampleR *= 0.855;}
				if (processing == 13) {inputSampleL *= 0.748; inputSampleR *= 0.748;}
				if (processing == 14) {inputSampleL *= 0.713; inputSampleR *= 0.713;}
				if (processing == 15) {inputSampleL *= 0.680; inputSampleR *= 0.680;}
				//we do a volume compensation immediately to gain stage stuff cleanly
				inputSampleL = sin(inputSampleL);
				inputSampleR = sin(inputSampleR);
				long double drySampleL; drySampleL = inputSampleL;
				long double drySampleR; drySampleR = inputSampleR; //everything runs 'inside' Console
				long double bass; bass = (processing * processing * 0.00001) / overallscale;
				//we are using the iir filters from out of SubsOnly
				
				mid = inputSampleL + inputSampleR; side = inputSampleL - inputSampleR;
				iirSampleAL = (iirSampleAL * (1.0 - (bass*0.618))) + (side * bass * 0.618); side = side - iirSampleAL;
				inputSampleL = (mid+side)/2.0; inputSampleR = (mid-side)/2.0;
				//bass narrowing filter				
								
				allpasstemp = ax - 1; if (allpasstemp < 0 || allpasstemp > am) allpasstemp = am;
				inputSampleL -= aL[allpasstemp]*0.5; aL[ax] = inputSampleL; inputSampleL *= 0.5;
				inputSampleR -= aR[allpasstemp]*0.5; aR[ax] = inputSampleR; inputSampleR *= 0.5;
				
				ax--; if (ax < 0 || ax > am) {ax = am;}
				inputSampleL += (aL[ax])*0.5; inputSampleR += (aR[ax])*0.5;
				if (ax == am) {inputSampleL += (aL[0])*0.5; inputSampleR += (aR[0])*0.5;}
				else {inputSampleL += (aL[ax+1])*0.5; inputSampleR += (aR[ax+1])*0.5;}
				//a darkened Midiverb-style allpass
				
				if (processing == 12) {inputSampleL *= 0.125; inputSampleR *= 0.125;}
				if (processing == 13) {inputSampleL *= 0.25; inputSampleR *= 0.25;}
				if (processing == 14) {inputSampleL *= 0.30; inputSampleR *= 0.30;}
				if (processing == 15) {inputSampleL *= 0.35; inputSampleR *= 0.35;}
				//Cans A suppresses the crossfeed more, Cans B makes it louder
								
				drySampleL += inputSampleR;
				drySampleR += inputSampleL; //the crossfeed
				
				allpasstemp = dx - 1; if (allpasstemp < 0 || allpasstemp > dm) allpasstemp = dm;
				inputSampleL -= dL[allpasstemp]*0.5; dL[dx] = inputSampleL; inputSampleL *= 0.5;
				inputSampleR -= dR[allpasstemp]*0.5; dR[dx] = inputSampleR; inputSampleR *= 0.5;
				
				dx--; if (dx < 0 || dx > dm) {dx = dm;}
				inputSampleL += (dL[dx])*0.5; inputSampleR += (dR[dx])*0.5;
				if (dx == dm) {inputSampleL += (dL[0])*0.5; inputSampleR += (dR[0])*0.5;}
				else {inputSampleL += (dL[dx+1])*0.5; inputSampleR += (dR[dx+1])*0.5;}
				//a darkened Midiverb-style allpass, which is stretching the previous one even more
				
				inputSampleL *= 0.25; inputSampleR *= 0.25;
				//for all versions of Cans the second level of bloom is this far down
				//and, remains on the opposite speaker rather than crossing again to the original side
				
				drySampleL += inputSampleR;
				drySampleR += inputSampleL; //add the crossfeed and very faint extra verbyness
				
				inputSampleL = drySampleL;
				inputSampleR = drySampleR; //and output our can-opened headphone feed
				
				mid = inputSampleL + inputSampleR; side = inputSampleL - inputSampleR;
				iirSampleAR = (iirSampleAR * (1.0 - bass)) + (side * bass); side = side - iirSampleAR;
				inputSampleL = (mid+side)/2.0; inputSampleR = (mid-side)/2.0;
				//bass narrowing filter
				
				if (inputSampleL > 1.0) inputSampleL = 1.0; if (inputSampleL < -1.0) inputSampleL = -1.0; inputSampleL = asin(inputSampleL);
				if (inputSampleR > 1.0) inputSampleR = 1.0; if (inputSampleR < -1.0) inputSampleR = -1.0; inputSampleR = asin(inputSampleR);
				//ConsoleBuss processing
				break;
			case 16:
				long double inputSample = (inputSampleL + inputSampleR) * 0.5;
				inputSampleL = -inputSample;
				inputSampleR = inputSample;
				break;
		}
		
		
		//begin Not Just Another Dither
		if (processing == 1) {
			inputSampleL = inputSampleL * 32768.0; //or 16 bit option
			inputSampleR = inputSampleR * 32768.0; //or 16 bit option
		} else {
			inputSampleL = inputSampleL * 8388608.0; //for literally everything else
			inputSampleR = inputSampleR * 8388608.0; //we will apply the 24 bit NJAD
		} //on the not unreasonable assumption that we are very likely playing back on 24 bit DAC
		//if we're not, then all we did was apply a Benford Realness function at 24 bits down.
		
		bool cutbinsL; cutbinsL = false;
		bool cutbinsR; cutbinsR = false;
		long double drySampleL; drySampleL = inputSampleL;
		long double drySampleR; drySampleR = inputSampleR;
		inputSampleL -= noiseShapingL;
		inputSampleR -= noiseShapingR;
		//NJAD L
		long double benfordize; benfordize = floor(inputSampleL);
		while (benfordize >= 1.0) benfordize /= 10;
		while (benfordize < 1.0 && benfordize > 0.0000001) benfordize *= 10;
		int hotbinA; hotbinA = floor(benfordize);
		//hotbin becomes the Benford bin value for this number floored
		long double totalA; totalA = 0;
		if ((hotbinA > 0) && (hotbinA < 10))
		{
			bynL[hotbinA] += 1; if (bynL[hotbinA] > 982) cutbinsL = true;
			totalA += (301-bynL[1]); totalA += (176-bynL[2]); totalA += (125-bynL[3]);
			totalA += (97-bynL[4]); totalA += (79-bynL[5]); totalA += (67-bynL[6]);
			totalA += (58-bynL[7]); totalA += (51-bynL[8]); totalA += (46-bynL[9]); bynL[hotbinA] -= 1;
		} else hotbinA = 10;
		//produce total number- smaller is closer to Benford real
		benfordize = ceil(inputSampleL);
		while (benfordize >= 1.0) benfordize /= 10;
		while (benfordize < 1.0 && benfordize > 0.0000001) benfordize *= 10;
		int hotbinB; hotbinB = floor(benfordize);
		//hotbin becomes the Benford bin value for this number ceiled
		long double totalB; totalB = 0;
		if ((hotbinB > 0) && (hotbinB < 10))
		{
			bynL[hotbinB] += 1; if (bynL[hotbinB] > 982) cutbinsL = true;
			totalB += (301-bynL[1]); totalB += (176-bynL[2]); totalB += (125-bynL[3]);
			totalB += (97-bynL[4]); totalB += (79-bynL[5]); totalB += (67-bynL[6]);
			totalB += (58-bynL[7]); totalB += (51-bynL[8]); totalB += (46-bynL[9]); bynL[hotbinB] -= 1;
		} else hotbinB = 10;
		//produce total number- smaller is closer to Benford real
		long double outputSample;
		if (totalA < totalB) {bynL[hotbinA] += 1; outputSample = floor(inputSampleL);}
		else {bynL[hotbinB] += 1; outputSample = floor(inputSampleL+1);}
		//assign the relevant one to the delay line
		//and floor/ceil signal accordingly
		if (cutbinsL) {
			bynL[1] *= 0.99; bynL[2] *= 0.99; bynL[3] *= 0.99; bynL[4] *= 0.99; bynL[5] *= 0.99; 
			bynL[6] *= 0.99; bynL[7] *= 0.99; bynL[8] *= 0.99; bynL[9] *= 0.99; bynL[10] *= 0.99; 
		}
		noiseShapingL += outputSample - drySampleL;			
		if (noiseShapingL > fabs(inputSampleL)) noiseShapingL = fabs(inputSampleL);
		if (noiseShapingL < -fabs(inputSampleL)) noiseShapingL = -fabs(inputSampleL);
		if (processing == 1) inputSampleL = outputSample / 32768.0;
		else inputSampleL = outputSample / 8388608.0;
		if (inputSampleL > 1.0) inputSampleL = 1.0;
		if (inputSampleL < -1.0) inputSampleL = -1.0;
		//finished NJAD L
		
		//NJAD R
		benfordize = floor(inputSampleR);
		while (benfordize >= 1.0) benfordize /= 10;
		while (benfordize < 1.0 && benfordize > 0.0000001) benfordize *= 10;		
		hotbinA = floor(benfordize);
		//hotbin becomes the Benford bin value for this number floored
		totalA = 0;
		if ((hotbinA > 0) && (hotbinA < 10))
		{
			bynR[hotbinA] += 1; if (bynR[hotbinA] > 982) cutbinsR = true;
			totalA += (301-bynR[1]); totalA += (176-bynR[2]); totalA += (125-bynR[3]);
			totalA += (97-bynR[4]); totalA += (79-bynR[5]); totalA += (67-bynR[6]);
			totalA += (58-bynR[7]); totalA += (51-bynR[8]); totalA += (46-bynR[9]); bynR[hotbinA] -= 1;
		} else hotbinA = 10;
		//produce total number- smaller is closer to Benford real
		benfordize = ceil(inputSampleR);
		while (benfordize >= 1.0) benfordize /= 10;
		while (benfordize < 1.0 && benfordize > 0.0000001) benfordize *= 10;		
		hotbinB = floor(benfordize);
		//hotbin becomes the Benford bin value for this number ceiled
		totalB = 0;
		if ((hotbinB > 0) && (hotbinB < 10))
		{
			bynR[hotbinB] += 1; if (bynR[hotbinB] > 982) cutbinsR = true;
			totalB += (301-bynR[1]); totalB += (176-bynR[2]); totalB += (125-bynR[3]);
			totalB += (97-bynR[4]); totalB += (79-bynR[5]); totalB += (67-bynR[6]);
			totalB += (58-bynR[7]); totalB += (51-bynR[8]); totalB += (46-bynR[9]); bynR[hotbinB] -= 1;
		} else hotbinB = 10;
		//produce total number- smaller is closer to Benford real
		if (totalA < totalB) {bynR[hotbinA] += 1; outputSample = floor(inputSampleR);}
		else {bynR[hotbinB] += 1; outputSample = floor(inputSampleR+1);}
		//assign the relevant one to the delay line
		//and floor/ceil signal accordingly
		if (cutbinsR) {
			bynR[1] *= 0.99; bynR[2] *= 0.99; bynR[3] *= 0.99; bynR[4] *= 0.99; bynR[5] *= 0.99; 
			bynR[6] *= 0.99; bynR[7] *= 0.99; bynR[8] *= 0.99; bynR[9] *= 0.99; bynR[10] *= 0.99; 
		}
		noiseShapingR += outputSample - drySampleR;			
		if (noiseShapingR > fabs(inputSampleR)) noiseShapingR = fabs(inputSampleR);
		if (noiseShapingR < -fabs(inputSampleR)) noiseShapingR = -fabs(inputSampleR);
		if (processing == 1) inputSampleR = outputSample / 32768.0;
		else inputSampleR = outputSample / 8388608.0;
		if (inputSampleR > 1.0) inputSampleR = 1.0;
		if (inputSampleR < -1.0) inputSampleR = -1.0;
		//finished NJAD R		
		
		//does not use 32 bit stereo floating point dither
		
		*outputL = inputSampleL;
		*outputR = inputSampleR;
		//direct stereo out
		
		inputL += 1;
		inputR += 1;
		outputL += 1;
		outputR += 1;
	}
	return noErr;
}