aboutsummaryrefslogblamecommitdiffstats
path: root/plugins/MacAU/EQ/EQ.cpp
blob: 4b2d40be7045ec321813d30102bf22401e9bd0b4 (plain) (tree)































































































































































































































                                                                                                                                    
                       



























































                                                                                                  
































































                                                                                                             
                             






































































































































































                                                                                                                      




                                                                                               






                                                                 
/*
*	File:		EQ.cpp
*	
*	Version:	1.0
* 
*	Created:	10/26/12
*	
*	Copyright:  Copyright � 2012 Airwindows, All Rights Reserved
* 
*	Disclaimer:	IMPORTANT:  This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in 
*				consideration of your agreement to the following terms, and your use, installation, modification 
*				or redistribution of this Apple software constitutes acceptance of these terms.  If you do 
*				not agree with these terms, please do not use, install, modify or redistribute this Apple 
*				software.
*
*				In consideration of your agreement to abide by the following terms, and subject to these terms, 
*				Apple grants you a personal, non-exclusive license, under Apple's copyrights in this 
*				original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the 
*				Apple Software, with or without modifications, in source and/or binary forms; provided that if you 
*				redistribute the Apple Software in its entirety and without modifications, you must retain this 
*				notice and the following text and disclaimers in all such redistributions of the Apple Software. 
*				Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to 
*				endorse or promote products derived from the Apple Software without specific prior written 
*				permission from Apple.  Except as expressly stated in this notice, no other rights or 
*				licenses, express or implied, are granted by Apple herein, including but not limited to any 
*				patent rights that may be infringed by your derivative works or by other works in which the 
*				Apple Software may be incorporated.
*
*				The Apple Software is provided by Apple on an "AS IS" basis.  APPLE MAKES NO WARRANTIES, EXPRESS OR 
*				IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY 
*				AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE 
*				OR IN COMBINATION WITH YOUR PRODUCTS.
*
*				IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL 
*				DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 
*				OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, 
*				REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER 
*				UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN 
*				IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/*=============================================================================
	EQ.cpp
	
=============================================================================*/
#include "EQ.h"


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

COMPONENT_ENTRY(EQ)


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	EQ::EQ
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
EQ::EQ(AudioUnit component)
	: AUEffectBase(component)
{
	CreateElements();
	Globals()->UseIndexedParameters(kNumberOfParameters);
	SetParameter(kParam_One, kDefaultValue_ParamOne );
	SetParameter(kParam_Two, kDefaultValue_ParamTwo );
	SetParameter(kParam_Three, kDefaultValue_ParamThree );
	SetParameter(kParam_Four, kDefaultValue_ParamFour );
	SetParameter(kParam_Five, kDefaultValue_ParamFive );
	SetParameter(kParam_Six, kDefaultValue_ParamSix );
	SetParameter(kParam_Seven, kDefaultValue_ParamSeven );
	SetParameter(kParam_Eight, kDefaultValue_ParamEight );
        
#if AU_DEBUG_DISPATCHER
	mDebugDispatcher = new AUDebugDispatcher (this);
#endif
	
}


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	EQ::GetParameterValueStrings
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult			EQ::GetParameterValueStrings(AudioUnitScope		inScope,
                                                                AudioUnitParameterID	inParameterID,
                                                                CFArrayRef *		outStrings)
{
        
    return kAudioUnitErr_InvalidProperty;
}



//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	EQ::GetParameterInfo
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult			EQ::GetParameterInfo(AudioUnitScope		inScope,
                                                        AudioUnitParameterID	inParameterID,
                                                        AudioUnitParameterInfo	&outParameterInfo )
{
	ComponentResult result = noErr;

	outParameterInfo.flags = 	kAudioUnitParameterFlag_IsWritable
						|		kAudioUnitParameterFlag_IsReadable;
    
    if (inScope == kAudioUnitScope_Global) {
        switch(inParameterID)
        {
           case kParam_One:
                AUBase::FillInParameterName (outParameterInfo, kParameterOneName, false);
                outParameterInfo.unit = kAudioUnitParameterUnit_Decibels;
                outParameterInfo.minValue = -12.0;
                outParameterInfo.maxValue = 12.0;
                outParameterInfo.defaultValue = kDefaultValue_ParamOne;
                break;
            case kParam_Two:
                AUBase::FillInParameterName (outParameterInfo, kParameterTwoName, false);
                outParameterInfo.unit = kAudioUnitParameterUnit_Decibels;
                outParameterInfo.minValue = -12.0;
                outParameterInfo.maxValue = 12.0;
                outParameterInfo.defaultValue = kDefaultValue_ParamTwo;
                break;
            case kParam_Three:
                AUBase::FillInParameterName (outParameterInfo, kParameterThreeName, false);
                outParameterInfo.unit = kAudioUnitParameterUnit_Decibels;
                outParameterInfo.minValue = -12.0;
                outParameterInfo.maxValue = 12.0;
                outParameterInfo.defaultValue = kDefaultValue_ParamThree;
                break;
			case kParam_Four:
                AUBase::FillInParameterName (outParameterInfo, kParameterFourName, false);
                outParameterInfo.unit = kAudioUnitParameterUnit_CustomUnit;
 				outParameterInfo.flags |= kAudioUnitParameterFlag_DisplayLogarithmic;
				outParameterInfo.unitName = kParameterFourUnit;
 				outParameterInfo.minValue = 1.0;
                outParameterInfo.maxValue = 16.0;
                outParameterInfo.defaultValue = kDefaultValue_ParamFour;
                break;
			case kParam_Five:
                AUBase::FillInParameterName (outParameterInfo, kParameterFiveName, false);
                outParameterInfo.unit = kAudioUnitParameterUnit_CustomUnit;
 				outParameterInfo.flags |= kAudioUnitParameterFlag_DisplayLogarithmic;
				outParameterInfo.unitName = kParameterFiveUnit;
 				outParameterInfo.minValue = 1.0;
                outParameterInfo.maxValue = 16.0;
                outParameterInfo.defaultValue = kDefaultValue_ParamFive;
                break;
			case kParam_Six:
                AUBase::FillInParameterName (outParameterInfo, kParameterSixName, false);
                outParameterInfo.unit = kAudioUnitParameterUnit_CustomUnit;
  				outParameterInfo.flags |= kAudioUnitParameterFlag_DisplayLogarithmic;
				outParameterInfo.unitName = kParameterSixUnit;
 				outParameterInfo.minValue = 30.0;
                outParameterInfo.maxValue = 1600.0;
                outParameterInfo.defaultValue = kDefaultValue_ParamSix;
                break;
			case kParam_Seven:
                AUBase::FillInParameterName (outParameterInfo, kParameterSevenName, false);
                outParameterInfo.unit = kAudioUnitParameterUnit_CustomUnit;
  				outParameterInfo.flags |= kAudioUnitParameterFlag_DisplayLogarithmic;
				outParameterInfo.unitName = kParameterSevenUnit;
 				outParameterInfo.minValue = 30.0;
                outParameterInfo.maxValue = 1600.0;
                outParameterInfo.defaultValue = kDefaultValue_ParamSeven;
                break;
			case kParam_Eight:
                AUBase::FillInParameterName (outParameterInfo, kParameterEightName, false);
				outParameterInfo.unit = kAudioUnitParameterUnit_Decibels;
                outParameterInfo.minValue = -18.0;
                outParameterInfo.maxValue = 18.0;
				outParameterInfo.defaultValue = kDefaultValue_ParamEight;
                break;
			default:
                result = kAudioUnitErr_InvalidParameter;
                break;
            }
	} else {
        result = kAudioUnitErr_InvalidParameter;
    }
    


	return result;
}

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	EQ::GetPropertyInfo
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult			EQ::GetPropertyInfo (AudioUnitPropertyID	inID,
                                                        AudioUnitScope		inScope,
                                                        AudioUnitElement	inElement,
                                                        UInt32 &		outDataSize,
                                                        Boolean &		outWritable)
{
	return AUEffectBase::GetPropertyInfo (inID, inScope, inElement, outDataSize, outWritable);
}

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	EQ::GetProperty
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult			EQ::GetProperty(	AudioUnitPropertyID inID,
                                                        AudioUnitScope 		inScope,
                                                        AudioUnitElement 	inElement,
                                                        void *			outData )
{
	return AUEffectBase::GetProperty (inID, inScope, inElement, outData);
}

//	EQ::Initialize
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ComponentResult EQ::Initialize()
{
    ComponentResult result = AUEffectBase::Initialize();
    if (result == noErr)
        Reset(kAudioUnitScope_Global, 0);
    return result;
}

#pragma mark ____EQEffectKernel



//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	EQ::EQKernel::Reset()
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
void		EQ::EQKernel::Reset()
{
	fpNShape = 0.0;

	iirHighSampleA = 0.0;
	iirHighSampleB = 0.0;
	iirHighSampleC = 0.0;
	iirHighSampleD = 0.0;
	iirHighSampleE = 0.0;
	iirLowSampleA = 0.0;
	iirLowSampleB = 0.0;
	iirLowSampleC = 0.0;
	iirLowSampleD = 0.0;
	iirLowSampleE = 0.0;
	iirHighSample = 0.0;
	iirLowSample = 0.0;
	tripletA = 0.0;
	tripletB = 0.0;
	tripletC = 0.0;
	tripletFactor = 0.0;
	flip = false;
	flipthree = 0;

	lowpassSampleAA = 0.0;
	lowpassSampleAB = 0.0;
	lowpassSampleBA = 0.0;
	lowpassSampleBB = 0.0;
	lowpassSampleCA = 0.0;
	lowpassSampleCB = 0.0;
	lowpassSampleDA = 0.0;
	lowpassSampleDB = 0.0;
	lowpassSampleE = 0.0;
	lowpassSampleF = 0.0;
	lowpassSampleG = 0.0;
	
	highpassSampleAA = 0.0;
	highpassSampleAB = 0.0;
	highpassSampleBA = 0.0;
	highpassSampleBB = 0.0;
	highpassSampleCA = 0.0;
	highpassSampleCB = 0.0;
	highpassSampleDA = 0.0;
	highpassSampleDB = 0.0;
	highpassSampleE = 0.0;
	highpassSampleF = 0.0;
	
	lastSample = 0.0;
	last2Sample = 0.0;
}

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//	EQ::EQKernel::Process
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
void		EQ::EQKernel::Process(	const Float32 	*inSourceP,
                                                    Float32		 	*inDestP,
                                                    UInt32 			inFramesToProcess,
                                                    UInt32			inNumChannels, 
                                                    bool			&ioSilence )
{
	UInt32 nSampleFrames = inFramesToProcess;
	const Float32 *sourceP = inSourceP;
	Float32 *destP = inDestP;
	Float64 overallscale = GetSampleRate();
	Float64 inputSample;
	Float64 highSample = 0.0;
	Float64 midSample = 0.0;
	Float64 bassSample = 0.0;
	Float64 densityA = GetParameter( kParam_One )/2.0;
	Float64 densityB = GetParameter( kParam_Two )/2.0;
	Float64 densityC = GetParameter( kParam_Three )/2.0;

	densityA = pow(10.0,densityA/20.0)-1.0;
	densityB = pow(10.0,densityB/20.0)-1.0;
	densityC = pow(10.0,densityC/20.0)-1.0;
	//convert to 0 to X multiplier with 1.0 being O db
	//minus one gives nearly -1 to ? (should top out at 1)
	//calibrate so that X db roughly equals X db with maximum topping out at 1 internally
	
	Float64 tripletIntensity = -densityA;
	
	Float64 iirAmountC = (GetParameter( kParam_Four )*0.0188) + 0.7;
	if (iirAmountC > 1.0) iirAmountC = 1.0;
	bool engageLowpass = false;
	if (GetParameter( kParam_Four ) < 15.99) engageLowpass = true;
	
	Float64 iirAmountA = (GetParameter( kParam_Five )*1000)/overallscale;
	Float64 iirAmountB = (GetParameter( kParam_Six )*10)/overallscale;
	Float64 iirAmountD = (GetParameter( kParam_Seven )*1.0)/overallscale;
	bool engageHighpass = false;
	if (GetParameter( kParam_Seven ) > 30.01) engageHighpass = true;
	//bypass the highpass and lowpass if set to extremes
	Float64 bridgerectifier;
	Float64 outA = fabs(densityA);
	Float64 outB = fabs(densityB);
	Float64 outC = fabs(densityC);
	Float64 outputgain = pow(10.0,GetParameter( kParam_Eight )/20.0);
	
	
	
	while (nSampleFrames-- > 0) {
		inputSample = *sourceP;
		if (inputSample<1.2e-38 && -inputSample<1.2e-38) {
			static int noisesource = 0;
			//this declares a variable before anything else is compiled. It won't keep assigning
			//it to 0 for every sample, it's as if the declaration doesn't exist in this context,
			//but it lets me add this denormalization fix in a single place rather than updating
			//it in three different locations. The variable isn't thread-safe but this is only
			//a random seed and we can share it with whatever.
			noisesource = noisesource % 1700021; noisesource++;
			int residue = noisesource * noisesource;
			residue = residue % 170003; residue *= residue;
			residue = residue % 17011; residue *= residue;
			residue = residue % 1709; residue *= residue;
			residue = residue % 173; residue *= residue;
			residue = residue % 17;
			double applyresidue = residue;
			applyresidue *= 0.00000001;
			applyresidue *= 0.00000001;
			inputSample = applyresidue;
			//this denormalization routine produces a white noise at -300 dB which the noise
			//shaping will interact with to produce a bipolar output, but the noise is actually
			//all positive. That should stop any variables from going denormal, and the routine
			//only kicks in if digital black is input. As a final touch, if you save to 24-bit
			//the silence will return to being digital black again.
		}
		
		last2Sample = lastSample;
		lastSample = inputSample;
		flip = !flip;
		flipthree++;
		if (flipthree < 1 || flipthree > 3) flipthree = 1;
		//counters
		
		switch (flipthree)
		{
			case 1:
				tripletFactor = last2Sample - inputSample;
				tripletA += tripletFactor;
				tripletC -= tripletFactor;
				tripletFactor = tripletA * tripletIntensity;
				iirHighSampleC = (iirHighSampleC * (1 - iirAmountA)) + (inputSample * iirAmountA);
				highSample = inputSample - iirHighSampleC;
				iirLowSampleC = (iirLowSampleC * (1 - iirAmountB)) + (inputSample * iirAmountB);
				bassSample = iirLowSampleC;
				break;
			case 2:
				tripletFactor = last2Sample - inputSample;
				tripletB += tripletFactor;
				tripletA -= tripletFactor;
				tripletFactor = tripletB * tripletIntensity;
				iirHighSampleD = (iirHighSampleD * (1 - iirAmountA)) + (inputSample * iirAmountA);
				highSample = inputSample - iirHighSampleD;
				iirLowSampleD = (iirLowSampleD * (1 - iirAmountB)) + (inputSample * iirAmountB);
				bassSample = iirLowSampleD;
				break;
			case 3:
				tripletFactor = last2Sample - inputSample;
				tripletC += tripletFactor;
				tripletB -= tripletFactor;
				tripletFactor = tripletC * tripletIntensity;
				iirHighSampleE = (iirHighSampleE * (1 - iirAmountA)) + (inputSample * iirAmountA);
				highSample = inputSample - iirHighSampleE;
				iirLowSampleE = (iirLowSampleE * (1 - iirAmountB)) + (inputSample * iirAmountB);
				bassSample = iirLowSampleE;
				break;
		}
		tripletA /= 2.0;
		tripletB /= 2.0;
		tripletC /= 2.0;
		highSample = highSample + tripletFactor;
		
		if (flip)
		{
			iirHighSampleA = (iirHighSampleA * (1 - iirAmountA)) + (highSample * iirAmountA);
			highSample = highSample - iirHighSampleA;
			iirLowSampleA = (iirLowSampleA * (1 - iirAmountB)) + (bassSample * iirAmountB);
			bassSample = iirLowSampleA;
		}
		else
		{
			iirHighSampleB = (iirHighSampleB * (1 - iirAmountA)) + (highSample * iirAmountA);
			highSample = highSample - iirHighSampleB;
			iirLowSampleB = (iirLowSampleB * (1 - iirAmountB)) + (bassSample * iirAmountB);
			bassSample = iirLowSampleB;
		}
		iirHighSample = (iirHighSample * (1 - iirAmountA)) + (highSample * iirAmountA);
		highSample = highSample - iirHighSample;
		iirLowSample = (iirLowSample * (1 - iirAmountB)) + (bassSample * iirAmountB);
		bassSample = iirLowSample;
		
		midSample = (inputSample-bassSample)-highSample;

		//drive section
		highSample *= (densityA+1.0);
		bridgerectifier = fabs(highSample)*1.57079633;
		if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
		//max value for sine function
		if (densityA > 0) bridgerectifier = sin(bridgerectifier);
		else bridgerectifier = 1-cos(bridgerectifier);
		//produce either boosted or starved version
		if (highSample > 0) highSample = (highSample*(1-outA))+(bridgerectifier*outA);
		else highSample = (highSample*(1-outA))-(bridgerectifier*outA);
		//blend according to densityA control
		
		midSample *= (densityB+1.0);
		bridgerectifier = fabs(midSample)*1.57079633;
		if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
		//max value for sine function
		if (densityB > 0) bridgerectifier = sin(bridgerectifier);
		else bridgerectifier = 1-cos(bridgerectifier);
		//produce either boosted or starved version
		if (midSample > 0) midSample = (midSample*(1-outB))+(bridgerectifier*outB);
		else midSample = (midSample*(1-outB))-(bridgerectifier*outB);
		//blend according to densityB control
		
		bassSample *= (densityC+1.0);
		bridgerectifier = fabs(bassSample)*1.57079633;
		if (bridgerectifier > 1.57079633) bridgerectifier = 1.57079633;
		//max value for sine function
		if (densityC > 0) bridgerectifier = sin(bridgerectifier);
		else bridgerectifier = 1-cos(bridgerectifier);
		//produce either boosted or starved version
		if (bassSample > 0) bassSample = (bassSample*(1-outC))+(bridgerectifier*outC);
		else bassSample = (bassSample*(1-outC))-(bridgerectifier*outC);
		//blend according to densityC control

		inputSample = midSample;
		inputSample += highSample;
		inputSample += bassSample;
		
		if (engageHighpass)
		{
			if (flip)
			{
				highpassSampleAA = (highpassSampleAA * (1 - iirAmountD)) + (inputSample * iirAmountD);
				inputSample = inputSample - highpassSampleAA;
				highpassSampleBA = (highpassSampleBA * (1 - iirAmountD)) + (inputSample * iirAmountD);
				inputSample = inputSample - highpassSampleBA;
				highpassSampleCA = (highpassSampleCA * (1 - iirAmountD)) + (inputSample * iirAmountD);
				inputSample = inputSample - highpassSampleCA;
				highpassSampleDA = (highpassSampleDA * (1 - iirAmountD)) + (inputSample * iirAmountD);
				inputSample = inputSample - highpassSampleDA;
			}
			else
			{
				highpassSampleAB = (highpassSampleAB * (1 - iirAmountD)) + (inputSample * iirAmountD);
				inputSample = inputSample - highpassSampleAB;
				highpassSampleBB = (highpassSampleBB * (1 - iirAmountD)) + (inputSample * iirAmountD);
				inputSample = inputSample - highpassSampleBB;
				highpassSampleCB = (highpassSampleCB * (1 - iirAmountD)) + (inputSample * iirAmountD);
				inputSample = inputSample - highpassSampleCB;
				highpassSampleDB = (highpassSampleDB * (1 - iirAmountD)) + (inputSample * iirAmountD);
				inputSample = inputSample - highpassSampleDB;
			}
			highpassSampleE = (highpassSampleE * (1 - iirAmountD)) + (inputSample * iirAmountD);
			inputSample = inputSample - highpassSampleE;
			highpassSampleF = (highpassSampleF * (1 - iirAmountD)) + (inputSample * iirAmountD);
			inputSample = inputSample - highpassSampleF;			
			
		}
		
		if (engageLowpass)
		{
			if (flip)
			{
				lowpassSampleAA = (lowpassSampleAA * (1 - iirAmountC)) + (inputSample * iirAmountC);
				inputSample = lowpassSampleAA;
				lowpassSampleBA = (lowpassSampleBA * (1 - iirAmountC)) + (inputSample * iirAmountC);
				inputSample = lowpassSampleBA;
				lowpassSampleCA = (lowpassSampleCA * (1 - iirAmountC)) + (inputSample * iirAmountC);
				inputSample = lowpassSampleCA;
				lowpassSampleDA = (lowpassSampleDA * (1 - iirAmountC)) + (inputSample * iirAmountC);
				inputSample = lowpassSampleDA;
				lowpassSampleE = (lowpassSampleE * (1 - iirAmountC)) + (inputSample * iirAmountC);
				inputSample = lowpassSampleE;
			}
			else
			{
				lowpassSampleAB = (lowpassSampleAB * (1 - iirAmountC)) + (inputSample * iirAmountC);
				inputSample = lowpassSampleAB;
				lowpassSampleBB = (lowpassSampleBB * (1 - iirAmountC)) + (inputSample * iirAmountC);
				inputSample = lowpassSampleBB;
				lowpassSampleCB = (lowpassSampleCB * (1 - iirAmountC)) + (inputSample * iirAmountC);
				inputSample = lowpassSampleCB;
				lowpassSampleDB = (lowpassSampleDB * (1 - iirAmountC)) + (inputSample * iirAmountC);
				inputSample = lowpassSampleDB;
				lowpassSampleF = (lowpassSampleF * (1 - iirAmountC)) + (inputSample * iirAmountC);
				inputSample = lowpassSampleF;			
			}
			lowpassSampleG = (lowpassSampleG * (1 - iirAmountC)) + (inputSample * iirAmountC);
			inputSample = (lowpassSampleG * (1 - iirAmountC)) + (inputSample * iirAmountC);
		}
		
		//built in output trim and dry/wet if desired
		if (outputgain != 1.0) inputSample *= outputgain;
		
		//32 bit dither, made small and tidy.
		int expon; frexpf((Float32)inputSample, &expon);
		long double dither = (rand()/(RAND_MAX*7.737125245533627e+25))*pow(2,expon+62);
		inputSample += (dither-fpNShape); fpNShape = dither;
		//end 32 bit dither
	
		*destP = inputSample;
		
		sourceP += inNumChannels; destP += inNumChannels;
	}
}