aboutsummaryrefslogtreecommitdiffstats
path: root/guides/source/security.md
diff options
context:
space:
mode:
Diffstat (limited to 'guides/source/security.md')
-rw-r--r--guides/source/security.md14
1 files changed, 7 insertions, 7 deletions
diff --git a/guides/source/security.md b/guides/source/security.md
index df8c24864e..98324141cc 100644
--- a/guides/source/security.md
+++ b/guides/source/security.md
@@ -23,7 +23,7 @@ Web application frameworks are made to help developers build web applications. S
In general there is no such thing as plug-n-play security. Security depends on the people using the framework, and sometimes on the development method. And it depends on all layers of a web application environment: The back-end storage, the web server and the web application itself (and possibly other layers or applications).
-The Gartner Group however estimates that 75% of attacks are at the web application layer, and found out "that out of 300 audited sites, 97% are vulnerable to attack". This is because web applications are relatively easy to attack, as they are simple to understand and manipulate, even by the lay person.
+The Gartner Group, however, estimates that 75% of attacks are at the web application layer, and found out "that out of 300 audited sites, 97% are vulnerable to attack". This is because web applications are relatively easy to attack, as they are simple to understand and manipulate, even by the lay person.
The threats against web applications include user account hijacking, bypass of access control, reading or modifying sensitive data, or presenting fraudulent content. Or an attacker might be able to install a Trojan horse program or unsolicited e-mail sending software, aim at financial enrichment or cause brand name damage by modifying company resources. In order to prevent attacks, minimize their impact and remove points of attack, first of all, you have to fully understand the attack methods in order to find the correct countermeasures. That is what this guide aims at.
@@ -62,7 +62,7 @@ Many web applications have an authentication system: a user provides a user name
Hence, the cookie serves as temporary authentication for the web application. Anyone who seizes a cookie from someone else, may use the web application as this user - with possibly severe consequences. Here are some ways to hijack a session, and their countermeasures:
-* Sniff the cookie in an insecure network. A wireless LAN can be an example of such a network. In an unencrypted wireless LAN it is especially easy to listen to the traffic of all connected clients. For the web application builder this means to _provide a secure connection over SSL_. In Rails 3.1 and later, this could be accomplished by always forcing SSL connection in your application config file:
+* Sniff the cookie in an insecure network. A wireless LAN can be an example of such a network. In an unencrypted wireless LAN, it is especially easy to listen to the traffic of all connected clients. For the web application builder this means to _provide a secure connection over SSL_. In Rails 3.1 and later, this could be accomplished by always forcing SSL connection in your application config file:
```ruby
config.force_ssl = true
@@ -102,7 +102,7 @@ Thus the session becomes a more secure place to store data. The encryption is
done using a server-side secret key `secrets.secret_key_base` stored in
`config/secrets.yml`.
-That means the security of this storage depends on this secret (and on the digest algorithm, which defaults to SHA1, for compatibility). So _don't use a trivial secret, i.e. a word from a dictionary, or one which is shorter than 30 characters, use `rake secret` instead_.
+That means the security of this storage depends on this secret (and on the digest algorithm, which defaults to SHA1, for compatibility). So _don't use a trivial secret, i.e. a word from a dictionary, or one which is shorter than 30 characters, use `rails secret` instead_.
`secrets.secret_key_base` is used for specifying a key which allows sessions for the application to be verified against a known secure key to prevent tampering. Applications get `secrets.secret_key_base` initialized to a random key present in `config/secrets.yml`, e.g.:
@@ -171,7 +171,7 @@ NOTE: _Sessions that never expire extend the time-frame for attacks such as cros
One possibility is to set the expiry time-stamp of the cookie with the session id. However the client can edit cookies that are stored in the web browser so expiring sessions on the server is safer. Here is an example of how to _expire sessions in a database table_. Call `Session.sweep("20 minutes")` to expire sessions that were used longer than 20 minutes ago.
```ruby
-class Session < ActiveRecord::Base
+class Session < ApplicationRecord
def self.sweep(time = 1.hour)
if time.is_a?(String)
time = time.split.inject { |count, unit| count.to_i.send(unit) }
@@ -381,9 +381,9 @@ Refer to the Injection section for countermeasures against XSS. It is _recommend
**CSRF** Cross-Site Request Forgery (CSRF), also known as Cross-Site Reference Forgery (XSRF), is a gigantic attack method, it allows the attacker to do everything the administrator or Intranet user may do. As you have already seen above how CSRF works, here are a few examples of what attackers can do in the Intranet or admin interface.
-A real-world example is a [router reconfiguration by CSRF](http://www.h-online.com/security/news/item/Symantec-reports-first-active-attack-on-a-DSL-router-735883.html). The attackers sent a malicious e-mail, with CSRF in it, to Mexican users. The e-mail claimed there was an e-card waiting for them, but it also contained an image tag that resulted in a HTTP-GET request to reconfigure the user's router (which is a popular model in Mexico). The request changed the DNS-settings so that requests to a Mexico-based banking site would be mapped to the attacker's site. Everyone who accessed the banking site through that router saw the attacker's fake web site and had their credentials stolen.
+A real-world example is a [router reconfiguration by CSRF](http://www.h-online.com/security/news/item/Symantec-reports-first-active-attack-on-a-DSL-router-735883.html). The attackers sent a malicious e-mail, with CSRF in it, to Mexican users. The e-mail claimed there was an e-card waiting for the user, but it also contained an image tag that resulted in a HTTP-GET request to reconfigure the user's router (which is a popular model in Mexico). The request changed the DNS-settings so that requests to a Mexico-based banking site would be mapped to the attacker's site. Everyone who accessed the banking site through that router saw the attacker's fake web site and had their credentials stolen.
-Another example changed Google Adsense's e-mail address and password by. If the victim was logged into Google Adsense, the administration interface for Google advertisements campaigns, an attacker could change their credentials.

+Another example changed Google Adsense's e-mail address and password. If the victim was logged into Google Adsense, the administration interface for Google advertisement campaigns, an attacker could change the credentials of the victim.

Another popular attack is to spam your web application, your blog or forum to propagate malicious XSS. Of course, the attacker has to know the URL structure, but most Rails URLs are quite straightforward or they will be easy to find out, if it is an open-source application's admin interface. The attacker may even do 1,000 lucky guesses by just including malicious IMG-tags which try every possible combination.
@@ -787,7 +787,7 @@ The following is an excerpt from the [Js.Yamanner@m](http://www.symantec.com/sec
var IDList = ''; var CRumb = ''; function makeRequest(url, Func, Method,Param) { ...
```
-The worms exploits a hole in Yahoo's HTML/JavaScript filter, which usually filters all target and onload attributes from tags (because there can be JavaScript). The filter is applied only once, however, so the onload attribute with the worm code stays in place. This is a good example why blacklist filters are never complete and why it is hard to allow HTML/JavaScript in a web application.
+The worms exploit a hole in Yahoo's HTML/JavaScript filter, which usually filters all targets and onload attributes from tags (because there can be JavaScript). The filter is applied only once, however, so the onload attribute with the worm code stays in place. This is a good example why blacklist filters are never complete and why it is hard to allow HTML/JavaScript in a web application.
Another proof-of-concept webmail worm is Nduja, a cross-domain worm for four Italian webmail services. Find more details on [Rosario Valotta's paper](http://www.xssed.com/news/37/Nduja_Connection_A_cross_webmail_worm_XWW/). Both webmail worms have the goal to harvest email addresses, something a criminal hacker could make money with.